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The structure of a complex network plays a crucial role in determining its dynamical properties. In
this work, we show that the directed, hierarchical organisation of a network causes the system to
break detailed balance and dictates the production of entropy through non-equilibrium dynamics.
We consider a wide range of dynamical processes and show how different directed network features
govern their thermodynamics. Next, we analyse a collection of 97 empirical networks and show
that strong directedness and non-equilibrium dynamics are both ubiquitous in real-world systems.
Finally, we present a simple method for inferring broken detailed balance and directed network struc-
ture from multivariate time-series and apply our method to identify non-equilibrium and hierarchical
organisation in both human neuroimaging and financial time-series. Overall, our results shed light
on the thermodynamic consequences of directed network structure and indicate the importance and
ubiquity of hierarchical organisation and non-equilibrium dynamics in real-world systems.

I. INTRODUCTION

The abstraction of large complex systems as networks
of interconnected elements has been instrumental in
the modelling of systems in ecology [1], economics [2],
sociology [3], bio-medicine [4], neuroscience [5, 6] and be-
yond [7]. In particular, dynamical processes evolving on
networks have become prototypical models of real-world
systems in a range of diverse fields [8–10]. Reconciling
the relationship between the structure of interactions
and the emergent dynamical phenomena of such sys-
tems remains a outstanding challenge. Many physical,
chemical and biological systems operate far from ther-
modynamic equilibrium [11]. These non-equilibrium
systems consume energy and dissipate heat to their
surroundings, producing entropy [12]. In particular,
energy consumption and entropy production represent
a key mechanism by which living systems are able to
stave off thermodynamic equilibrium and so-called ‘heat
death’ [13]. Equilibrium systems are often characterised
by symmetric interactions between identical elements
that in-turn yield time-reversible dynamics. Similarly,
non-reciprocal interactions between elements cause
violations of the so-called ‘detailed balance condition’
given, equivalently, by the equalities Pyx = Pxy and
πy · Px|y = πx · Py|x, and illustrated in Figure 1. Here

Pxy is the joint transition probability from state x
to y, Px|y is the transition probability from y to x
conditional on the system being in state y, and πy is the
steady-state probability of being in state y. Violation
of detailed balance leads to non-equilibrium steady
states and irreversibility in the system’s dynamics. The
degree to which a system diverges from thermodynamic
equilibrium can be quantified through the rate at which
it produces entropy [14, 15]. The entropy production
rate (EPR) quantifies the distance of the system from
equilibrium and the irreversibility of its dynamics by
measuring the divergence between the probability of
observing system trajectories and their time-reversals
[16]. In this work, we make progress on this front by
demonstrating a novel and important link between the
structure of directed networks and the thermodynamics
of dynamical processes evolving on them.

Broken detailed balance and non-equilibrium dy-
namics have been observed in a range of microscopic
[17–22] and mesoscopic [23] processes at the molecular
and cellular level in living systems. At the macroscopic
scale, temporal irreversibility has been observed in
evolutionary dynamics [24] and large-scale neural dy-
namics [25–27]. However, despite many advancements
in modern non-equilibrium statistical physics [28],
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FIG. 1. Asymmetry in complex systems Symmetric
nodal interactions leads to symmetric transition rates be-
tween system states whilst asymmetric interactions lead to
broken detailed balance. Top: a) An undirected network
with Wij = Wji. b) A directed network with Wij ̸= Wji. Blue
circles represents nodes or elements of the system. Bottom:
c) A system in detailed balance with Pxy = Pyx. d) A sys-
tem violating detailed balance with Pxy ̸= Pyx. Red squares
represent distinct, discrete system states. The thickness of
connections represents the weight/probability, respectively.

results in stochastic thermodynamics have been limited
to the study of small systems, with large, complex
systems only attracting attention very recently [29–32].
When we abstract systems as networks of nodes and
edges, symmetric interactions correspond to undirected
networks, i.e., when a pair of edges exist between two
nodes and they have the same weight in both directions.
Conversely, asymmetric interactions correspond to
directed networks, where the existence and strength of
edges can vary in each direction. Previous attempts to
reconcile network science and non-equilibrium thermo-
dynamics have focused on network representations of
state-space, where nodes represent mesoscopic states [33]
or thermodynamic quantities [34] whilst edges represent
transition rates. However, little is known about the
role of network structure in real-space, where nodes
and edges represent elements of the system and their
interaction strengths, with the exception of chemical
reaction networks [35–37]. Despite this, in systems such
as the human brain, pairwise interactions have been
shown to be the dominant contribution to the EPR,
highlighting the importance of network structure in a
system’s thermodynamics [38]. Understanding the role
of network topology remains an important unsolved
problem in the thermodynamics of complex systems [39].

As anticipated, symmetry-breaking in the organisa-
tion of complex systems is the structural feature that
drives network dynamical processes out of equilibrium.
Dynamical processes on directed networks drastically dif-
fer from their undirected counterparts [40, 41] including
in their phase-transitions [42], synchronisation proper-
ties [43, 44], topological resilience [45, 46] and pattern
formation [47, 48]. Recent studies on extensive datasets
of real-world networks from an array of disparate fields,
have shown a ubiquity of strong directedness and clear
signs of hierarchical organisation [41, 49–53]. As a result,
the dynamics of directed networks are more indicative
of the dynamics of real-world complex systems. In
particular, this strong directedness results in a marked
non-normality of the operators defined on such networks
[50, 54]. Consequently, non-normality pulls the under-
lying networked systems away from equilibrium [50].
Motivated by the ubiquity of directed structures in the
real world and their significance in nonlinear dynamics,
this paper aims to further strengthen this link from the
perspective of non-equilibrium statistical physics.

In this work, we bring new insight into the role of
network structure in the emergence of broken detailed
balance and irreversibility by demonstrating how the
directedness of the interaction network causes a dynami-
cal process to diverge from thermodynamic equilibrium.
We first define a range of measures of directedness in
networks and a scheme to smoothly parameterise the
directedness of a network. Secondly, we introduce four
network dynamical processes and calculate their EPR,
namely the discrete- and continuous-time random walks
(RW) [55, 56], Ornstein-Uhlenbeck (OU) [57] and Ising
dynamics [58]. We show that increased directedness
drives an increase in the EPR for all processes across
network size. Next, using the Erdös-Rényi (ER) [59]
as a null model, we decouple different measures of
directedness and show that locally evolving processes,
like the RW, produce more entropy when the system
becomes more ‘locally directed’, whereas the EPR
of globally coupled processes, like the Ising and OU
dynamics, is dictated by the ‘global directedness’ of
the underlying network. Subsequently, we consider
structural data in the form of 97 real-world directed
networks from a range of fields including biology, social
interactions, ecology, transport, and language [52].
By considering the processes evolving on real-world
topologies, we are able to further confirm the link
between the directedness measures and the EPR in
real systems. Finally, we describe a simple, but pow-
erful, method for extracting directed networks and the
EPR from multivariate time-series (MVTS) using a
linear auto-regression technique [60]. We apply this
method to MVTS from human neuroimaging and the
stock-market to reveal the hierarchical organisation of
brain-regions and stock price interactions as well as the
non-equilibrium nature of their dynamics. In particular
we confirm the increased EPR in task-based brain states,
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as previously found [25, 26, 61, 62], but additionally
show that a reorganisation of the hierarchy of brain
regions drives this phenomena. Moreover, we show that
consumer goods/services emerge as leader nodes in the
hierarchy of stocks that governs market movements.
Overall, this paper draws an important and fundamental
link between the directed structure of a complex system
and its stochastic thermodynamics. This work puts to
the forefront the importance of considering asymmetries
in interactions when studying the dynamics of complex
networks, a consideration often overlooked in areas such
as neuroscience [63, 64], and presents a new perspective
for analysing both non-equilibrium systems and directed
networks in both theory and empirical data.

II. MEASURES OF DIRECTEDNESS IN
NETWORKS

As anticipated, non-reciprocal interactions in complex
systems disrupt detailed balance, leading to an increase
in the EPR. This section delineates four established met-
rics to quantify the overall directedness of networks and
to examine their influence on EPR within both random
graphs and empirical datasets. These systems are repre-
sented as directed networks with non-negative weighted
adjacency matrices, W = (Wij), where Wij ≥ 0 signi-
fies the strength of the directed link i → j, including
self-edges Wii ≥ 0 and characterized by inherent asym-
metry W ̸= W⊤. By exploring four distinct metrics for
network directedness, we seek to elucidate its effect on
EPR, highlighting the emergence of hierarchical struc-
turing within networks – an outcome deeply influenced
by non-reciprocal interactions [52, 65].

A. Irreciprocity

As a measure of the directedness of a network, we first
consider the (ir)reciprocity [66][67, 68]. The reciprocity
quantifies how reciprocated pairwise relationships are on
average across the network by comparing each connection
i→ j with j → i. We first define the reciprocated portion
of the pairwise relationship between two nodes,

←→
W ij = min(Wij ,Wji) =

←→
W ji, (1)

and the unreciprocated portion in each direction,

←−
W ij = Wji −

←→
W ij =

−→
W ji. (2)

The reciprocity is then quantified by,

r(W ) =

∑
i,j ̸=i

←→
W ij∑

i,j ̸=i Wij
, (3)

which is in the range [0, 1] with r = 0 corresponding to a
perfectly unreciprocated network, where edges can only

run in a single direction, and r = 1 corresponding to an
undirected network. We quantify the overall directed-
ness of the network as 1 − r, which we define to be the
irreciprocity. Whilst the irreciprocity gives a measure of
directedness for the network as a whole, we describe it as
a ‘local’ measure, meaning it averages over each pairwise
relationship in turn without analyzing the structure of
the network ‘globally’. As a result, this measure fails to
distinguish between ‘loop-like’ structures and motifs that
cause the network to globally follow a single direction.
Directedness and non-zero irreciprocity are equivalent.

B. Trophic directedness

The question of whether a network globally follows a
direction in its structure is another important notion
of directedness. This idea is intimately linked to the
idea of a hierarchy within the system where nodes can
be organized into levels indicating their position in the
top-down organization of the network. First being put
forward in the field of ecology [49], in the context of food
webs, trophic (in)coherence is a measure quantifying
how neatly a network can be organized into so-called
trophic levels [51].

Inspired by the Helmholtz-Hodge decomposition
[69], the trophic incoherence of a network is given by,

F0(W ,h) = min
h

∑
i,j Wij(hj − hi − 1)2∑

i,j Wij
, (4)

where h = (h1, ..., hN ) is the vector with entries corre-
sponding to the trophic levels for each of the N nodes,
that minimizes the cost function [70]. The trophic levels
are found as solution of the linear system

Λh = v, (5)

where vi =
∑

j Wji −Wij and Λ = diag(u)−W −W⊤

defines the (symmetric) weighted graph Laplacian with
ui =

∑
j Wji +Wij [51].

The nodes of any network can be partitioned into
weakly connected components which are disjoint sets
of nodes where node i belong to a component if there
is a node j in the component with max(Wij ,Wji) > 0.
Furthermore, the number of weakly connected com-
ponents corresponds to the nullity of the Laplacian.
Consequently, the system (5) has a non-unique solution
corresponding to the nullity of the Laplacian. By
enforcing that the lowest trophic level in each (weakly)
connected component is equal to 0, one can obtain
a unique solution to the equation (5) and calculate
F0. The trophic incoherence, F0, is restricted to the
range [0, 1] with F0 = 1 corresponding to completely
non-hierarchical (including undirected) networks and
F0 = 0 corresponding to networks that can be perfectly
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organized into trophic levels. We will consider trophic
directedness,

√
1− F0, as a measure of directedness in

a network. Trophic directedness assumes the direction
of the flow to be bottom-up meaning a low trophic level
corresponds to the ‘top’ of the hierarchy if we were
to consider a more intuitive top-down visualisation.
By convention, throughout this paper, we display the
trophic levels of a network by plotting nodes with the
lower trophic levels at the top and inverting the y-axis.

C. Non-normality

A third notion of directedness is network non-normality
[50]. A matrix W is said to be normal if it satisfies,

WW⊤ = W⊤W . (6)

It is, therefore, non-normal if WW⊤ ̸= W⊤W [54].
Symmetric matrices are normal whilst non-normal
matrices are necessarily asymmetric. Correspondingly,
undirected networks are normal whilst non-normal
networks are directed. The significance of developing a
metric to quantify non-normality stems from the preva-
lence of non-normal matrices across a broad spectrum
of applications, encompassing both linear systems and
networks [54].

The eigenvectors of a non-normal matrix do not
form an orthonormal basis or in other words such
matrices are not diagonalisable by unitary matrices. As
a result, the autonomous system of linear differential
equations, ẋ(t) = Wx(t) where W is non-normal, can
undergo transient growth such that small perturba-
tions can excite the system away, temporarily, from
asymptotically stable equilibria. This feature has lead
to the investigation of the role and uses of non-normal
interactions in linear systems [50], neuronal [71] and
communication networks [72] as well as in pattern
formation [48], synchronization [43], resilience to per-
turbation [45] and network control of instabilities [73, 74].

A range of measures can be used to quantify the
non-normality of a matrix [50]. Of particular in-
terest are those derived from its spectrum, σ(W ),
which governs its behavior as a linear system, and its
pseudo-spectrum, σϵ(W ) = {σ(W + E) : ||E|| < ϵ},
which governs its response to perturbations [54]. The
transient behavior of non-normal linear systems can-
not be explained by the traditional spectral abscissa,
α(W ) = maxℜ(σ(W )), which determines the asymp-
totic dynamics. Instead, measures such as the numerical
abscissa, ω(W ) = maxσ( 12 (W + W⊤)), capture the
transient short-term growth of non-normal systems
whilst pseudo-spectral measures such as the ϵ-pseudo-
spectral abscissa, αϵ(W ) = maxℜ(σϵ(W )), and the

Kreiss constant, K(W ) = maxϵ>0
αϵ(W )

ϵ , capture their
sensitivity to perturbation [54]. We quantify the degree

to which a network breaks the normality condition using
a common spectral measure, the Henrici index,

dH(W ) =

√√√√||W ||2F − N∑
i=1

|λi|2, (7)

where ||W ||F =
√∑

i

∑
j W

2
ij is the Frobenius norm and

{λi} is the set of eigenvalues [54]. The Henrici index is
0 when a matrix is normal and positive otherwise. To
facilitate the comparison of various networks in terms of
non-normality, irrespective of their size, the normalized
Henrici index has been introduced [50],

d̂H(W ) =
dH(W )

||W ||F
, (8)

which has values between 0 and 1. We opt for the
Henrici index as it captures the spectral properties
of W , without directly assuming linear dynamics. In
order to understand the nature of non-normality as
a measure of hierarchical asymmetry, we consider an
unweighted adjacency matrix A. The entry (A⊤A)ij
represents the number of common sources connecting
into nodes i and j whilst (AA⊤)ij represents the number
of common targets from nodes i and j [51]. Therefore,
in a normal unweighted network, for every given pair of
nodes, the number of common sources and targets will
coincide whereas in a non-normal unweighted network
they will not coincide. In the case of weighted edges,
non-normality captures the hierarchical asymmetry and
the quantity |WW⊤ −W⊤W | is maximised is the case
of a directed acyclic graph (DAG) where, after node
relabelling, W is upper triangular yielding a clear net
direction and nodal hierarchy [50].

Nevertheless, trophic directedness and non-normality
are not equivalent and there are a range of networks
which are trophically undirected yet non-normal and
vice-versa (see Appendix A). Previous work has shown
that trophic directedness and non-normality are closely,
but non-linearly, correlated [41, 51]. Furthermore,
non-normality does not capture all directed networks,
as the set of asymmetric matrices contains, but is much
larger than, the set of non-normal matrices. There is
no complete characterisation of normal, asymmetric
matrices but examples include circulant, block-circulant
with circulant blocks, and skew-symmetric matrices. In
Appendix A, we revisit the notion of trophic flatness
(F0 = 1) extending the concept to show its inequiva-
lence to normality in weighted networks. We further
contribute a new example of a trophically flat, non-
normal network, uniquely without using a self-loop, thus
broadening the discourse beyond previous studies.
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D. Parameterising directedness in networks

To investigate the dynamical affects of directedness on
network dynamics, it would be preferable to continuously
vary the level of asymmetry in a network. To this aim, we
first generate highly non-normal, hierarchical networks
using a preferential attachment (PA) scheme with weak
reciprocal links (see Appendix B for details) [50]. We
then linearly interpolate between this strongly directed
network and its undirected Hermitian,

Ŵ (ϵ) = (1− ϵ)W̃ + ϵW , (9)

for ϵ ∈ [0, 1]. Here, the Hermitian network is given by

W̃ = 1
2

(
W +W⊤) . By increasing the parameter ϵ, we

are able to continuously increase the directedness of the
network up to some maximal value. For a highly non-
normal, hierarchical W , Figure 2 shows the measures of
directedness for the interpolated networks as a function
of ϵ.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 1 r(W( ))
1 rmin

1 F0(W( ))
1 F0(W)

dH(W( ))
dH(W)

dH(W( ))
dH(W)

FIG. 2. Parameterising directedness: Beginning with a
hierarchical, non-normal network W , we can measure the di-
rectedness of the parameterised network as a function of ϵ, the
interpolation parameter. Increasing ϵ increases the directed-
ness almost linearly for each of the four measures. Here each
measure is normalised by its maximum value which occurs at
ϵ = 1.

For the irreciprocity and trophic directedness, we can
show that the interpolation parameterises the measure
exactly linearly (for a proof see Appendix C) i.e.,

1− r(Ŵ (ϵ)) = ϵ(1− r(W )), (10)√
1− F0(Ŵ (ϵ) = ϵ

√
1− F0(W ). (11)

The eigenvalues of the matrix Ŵ (ϵ) are not calculable

from W̃ and W so the same cannot be done for the
Henrici indices. However, the numerical experiments,

shown for just one network in Figure 2, consistently show
an increase with ϵ. Furthermore, we note that any weakly
connected component in W becomes strongly connected
in the interpolated network Ŵ (ϵ) for ϵ < 1. Using the PA
scheme detailed in Appendix B, the network is strongly
connected, by construction.

III. ENTROPY PRODUCTION RATE OF
DYNAMICS ON DIRECTED NETWORKS

The investigation of the effect of directedness in break-
ing detailed balance and increasing the EPR in networked
systems, will be focused on four prototypical network dy-
namical processes: the random walk in discrete and con-
tinuous time [55, 75], the Orstein-Uhlenbeck [76] and the
Ising model [58]. Each of the dynamics shares three im-
portant traits. First, they represent a broad spectrum of
stochastic dynamics, with both continuous and symbolic
variables as well as continuous and discrete time, that are
well-studied and have found applications in many dis-
parate fields. Second, under certain conditions, all the
processes converge to equilibrium steady states on undi-
rected networks and non-equilibrium, entropy-producing
steady states on directed networks. Third, for each sys-
tem, we can either explicitly calculate or numerically es-
timate the EPR with minimal sampling from the dynam-
ics, alleviating the need for computational approaches.

A. Random walks on directed networks

We first consider the dynamics of non-interacting walkers
randomly exploring the graph [7, 55, 75].

1. Discrete-time random walk

Initially, we consider a discrete-time random walk
(DTRW) taking place on a weighted network with weight
matrixW . The DTRW defines an homogeneous discrete-
time Markov chain over the discrete state space {1, ..., N}
of nodes. The state of the random walker, x(t), at any
time t is the node on which the walker is standing. At
each time, the walker moves node according to the tran-
sition probability moving from node i to node j:

Tij =
Wij∑
j Wij

. (12)

Clearly, a walker can only move from one node to its
neighbours and the probability that the walker moves to
a particular node is proportional to the weight of the
edge connecting their current position and the destina-
tion node. On undirected networks, the DTRW con-
verges to an equilibrium steady state. On directed net-
works, instead,the graph must be strongly connected in
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order for the existence of a single steady state. Assum-
ing a population of random walkers that is originally dis-
tributed on the network with density π(0), then after t
steps, the distribution on the network is given by,

π(t) = π(0)T t, (13)

where T = (Tij). Therefore the steady-state satisfies

π = πT , (14)

namely, it is the Perron left eigenvector of the transition
matrix T [7]. Consequently, the joint transition proba-
bility is given by,

Pij = Tijπi, (15)

where πi is the steady-state probability of the walker
being at node i.

The EPR for discrete Markovian dynamics is the
Kullback-Leibler (KL) divergence between the forward
and backward joint transition rates between all pairs of
states [77]. For the RW, where nodes are states, it is
given by,

Φ =
∑
i,j

Pij log
Pij

Pji
, (16)

which we can now calculate explicitly given the exact
steady-state probabilities. However, we note that not
all states are achievable from other states. Given the
existence of an edge i → j with no reciprocal link,
Pij > Pji = 0, then (16) will diverge to infinity. There-
fore on a graph containing at least one entirely unrecip-
rocated edge, the EPR of the DTRW in a single time-
step is, in fact, infinite. To solve this problem and to
quantify the degree to which the detailed balance con-
dition is violated under these constraints, we use the
Jensen-Shannon (JS) divergence [78] instead of the KL-
divergence to quantify the difference between forward
and backward transition probabilities. For the DTRW,
we define our JS-divergence EPR to be:

Φ =
∑
i→j

Pij log
Pij

P̃ij

+ Pji log
Pji

P̃ij

, (17)

where the sum is over all directed edges and P̃ = 1
2 (P +

P⊤) is the Hermitian, or averaged, distribution. We can

directly verify that this quantity does not diverge as P̃ij

does not vanish on connected nodes. Importantly, unlike
in the other models, directedness is not a sufficient condi-
tion to guarantee that the steady state is non-equilibrium
and entropy producing, as will be shown later on.

2. Continuous-time random walk

In addition to the DTRW, we also consider the continu-
ous time random walk (CTRW) in which walkers transi-
tion between nodes at event times specified by a Poisson

renewal process [75]. In continuous-time, the transition
probabilities between nodes become time-dependent and
are given by,

Pt(j, i) = (etL)ij , (18)

where Pt(j, i) is the probability of a walker being at
node j at time t given they were at node i at time
zero and L = T − I is the random walk graph Lapla-
cian. The steady-state probabilities π coincide with the
DTRW and are given by the Perron left-eigenvector of T .

The time-dependent EPR of a continuous time Markov
process is given by,

Φ(t) =
1

2

∑
i,j

(Pt(i, j)πt,j − Pt(j, i)πt,i) log

(
Pt(i, j)πt,j

Pt(j, i)πt,i

)
,

(19)

where πt,i is the time-dependent probability of being in
state i [79]. Assuming that the system is in the steady
state, the EPR of the CTRW is given by,

Φ(t) =
1

2

∑
i,j

(etLjiπj − etLijπi) log

(
etLjiπj

etLijπi

)
. (20)

The EPR, Φ(t), varies in time, and so we compare the
EPR, Φ(T ), of different networks at some chosen final
time T > 0.

B. The network-based multivariate
Orstein-Uhlenbeck process

The Ornstein-Uhlenbeck (OU) process in one dimension
is a linear stochastic dynamical system modelling a
particle in Brownian motion [80]. It can be extended
to the multivariate case which models a number of
interacting particles [57]. In addition, it can be re-cast
as a network dynamical system [76], with interactions
being constrained to the weighted edges of a network, as
will be considered here.

Consider a system of N interacting particles, the
multivariate OU process is given by the Langevin
system,

dx

dt
= −Bx(t) + ξ(t), (21)

where x(t) ∈ RN is the time-dependent state vector, B ∈
RN×N is the friction matrix, and ξ(t) ∈ RN is additive
white noise with covariance given by,

⟨ξ(t)ξ⊤(t′)⟩ = 2Dδ(t− t′), (22)

where D ∈ RN×N is the noise covariance matrix which
is, by definition, symmetric.
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Given a weighted network, W , we can constrain
the interactions such that they occur along the edges
of the network. In addition, we assume the additive
noise to be applied independently to each node in the
network. Under these assumptions, the OU is given by
the Langevin system,

dx

dt
= Θ(γW − I)x(t) + ν(t), (23)

where I is the identity matrix, Θ is the reversion rate
and γ is the coupling parameter [76]. As the thermal
fluctuations are assumed to be uncorrelated in time and
between nodes, the additive noise satisfies,

⟨ν(t)ν⊤(t′)⟩ = 2σIδ(t− t′), (24)

where σ is the noise intensity. We relate the networked
system to the generalised OU process with the following
relations,

B := Θ(I − γW ), (25)

D := σI. (26)

Returning to the generalised multivariate case, we will
derive the EPR rate of the OU in a steady state (see
Appendix D and Ref. [57] for further details). If each
eigenvalue of the friction matrix, B, has positive real
part, then, in the absense of noise, the system relaxes ex-
ponentially fast to x = 0. Therefore, in the presence of
noise, the process will relax to a steady state with Gaus-
sian fluctuations. Generally, this is a non-equilibrium
steady state with the EPR being dependent on the ma-
trices B and D. The steady state is Gaussian with mean
x = 0 and steady state covariance given by,

S = lim
t→∞
⟨x(t)x⊤(t)⟩. (27)

It can be shown that S satisfies the following Sylvester
equation [81] (see Appendix D),

BS + SB⊤ = 2D. (28)

The condition for the steady state to be reversible and
in equilibrium is known to be [82],

BD = DB⊤, (29)

where the covariance is given by,

S = B−1D. (30)

In the case of the networked system, the reversibility con-
dition becomes,

W = W⊤, (31)

which corresponds to the interaction network being undi-
rected. When condition (29) is not satisfied, the EPR,
Φ, can be written in the form,

Φ = −Tr(D−1BQ). (32)

whereQ = BS−D. Therefore, given a matrix pairB,D
- or correspondingly, a network, W , and noise intensity, σ
- one has only to numerically solve the Sylvester equation
(28) in order to calculate the EPR Φ. We note that a
range of numerical techniques and linear algebra packages
exist for the accurate and efficient solution of equations
of this type [83].

C. The Ising model

The final stochastic dynamical system we consider is the
ubiquitous Ising spin-glass model [58]. The Ising model
with N nodes, is made up of N discrete spins that can
take values in {+1,−1}, ‘up’ and ‘down’ spins respec-
tively. We consider the system, in the absence of external
fields, evolving in discrete time with either sequential or
parallel spin updates. Given the state of the system, a
spin configuration, x(t) = (x1(t), ..., xN (t)), the spins at
time t+ 1 are updated as a discrete time Markov chain,

P (x(t+ 1)|x(t)) =
∏
i

exp
(
xi(t+ 1)

∑
j Wijxj(t)/T

)
2 cosh

(∑
j Wijxj(t)/T

) ,

(33)

where T is the thermodynamic temperature and W =
(Wij) are the pairwise coupling strengths defined by a
weighted network. In the absence of external fields,
the Ising model has reversible dynamics and is in equi-
librium when the coupling strengths are symmetric i.e.
Wij = Wji, corresponding to an undirected network,
and irreversible dynamics when the coupling strengths
are asymmetric, corresponding to a directed network [84].
The joint transition probability between two spin config-
urations, or states, y, z, is given by,

Pyz = P (x(t+ 1) = z,x(t) = y). (34)

We recall the EPR for Markovian dynamics, given by,

Φ =
∑
y,z

Pyz log
Pyz

Pzy
. (35)

Note that z, y are spin configurations, not nodes as in the
RW. We can factorise the joint transition probabilities as
follows,

Pyz = Pz|y · πy, (36)

where Pz|y = P (x(t + 1) = z|x(t) = y) is the condi-
tional transition probability and πy is the steady state
probability of being in state y. In order to estimate the
EPR, we can estimate the steady state probabilities πy

using numerical sampling and use the conditional tran-
sition probability given by equation (33) to calculate Φ
using (35). However, we note that there are 2N possible
configurations for a system with N spins. Therefore, as
the system gets large, estimating the steady state prob-
ability becomes computationally challenging. For this
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reason, our analysis of the Ising model bisects into the
case of small networks (N ≤ 10), where we can employ
this approach, and the case of large networks (N > 10),
where we require a mean-field approximation [85].

1. Small networks of Ising spins

As mentioned above, for small networks of spins (N ≤
10) we estimate the steady state probabilities by sam-
pling from the model using Glauber dynamics [86], a se-
quential spin update rule given by,

P [xi(t+ 1) = 1|x(t)] = [1 + exp(− 2

T

∑
j

Wijxj(t))]
−1.

(37)

We note that Glauber dynamics simulate the Ising model
with sequential, not parallel updates as described in
equation (33), but that these converge to the same steady
state dynamics over time. After a sufficient burn-in pe-

riod, we count the number of occurrences of each of the
2N states and divide that by the total number of time-
steps to given an estimate of the steady state probabili-
ties, which we then use to estimate the EPR.

2. Large networks of Ising spins

The combinatorial explosion of state space with the
number of spins, means that estimating the steady
state probabilities is computationally challenging for
large systems. Alternative approaches include coarse-
graining the state space by clustering together states
and estimating transition probabilities [25, 87, 88], or
using mean-field approximations [85]. Whilst using a
coarse-grained state-space has been shown to capture
the affect on the EPR of changing the temperature of
the Ising model [25], it proved to be an inaccurate when
varying the directedness of the network (see Appendix
G) and so we hereby opt for a mean-field approach.

In order to approximate the EPR of the system,
we focus on two key statistical properties of the system,

mi(t) =
∑
x(t)

xi(t)P (x(t)), (38)

Dil(t) =
∑

x(t),x(t−1)

[xi(t)xl(t− 1)P (x(t),x(t− 1))−mi(t)ml(t− 1)] . (39)

where m(t) = (m1(t), ...,mN (t)) is the average ac-
tivation rate of the system and D(t) is the delayed
correlation matrix. These are sufficient statistics to
define a particular Ising model [85].

Given a particular network, W , and the time-delayed
correlations, D(t), we can calculate the time-dependent
EPR, given by,

Φ(t) =
∑
i,j

(Wij −Wji)Dij,t. (40)

We note that Φ(t) = 0 if the network is undirected i.e.
Wij = Wji. We will estimate the average activation
rate and delayed correlations using the so-called clas-
sical naive mean field (NMF) given by,

mi(t) ≈ tanh
∑
j

Wijmj(t− 1), (41)

Dil(t) ≈Wil(1−m2
i (t))(1−m2

l (t− 1)). (42)

For a derivation see Appendix H. Beginning with all spins
set to 1, for a given network, we can use the NMF to
approximate the time-delayed correlations and use equa-
tion (40) to estimate the time-dependent EPR, which

we iteratively perform until Φ(t) converges to a time-
independent value Φ.

IV. ENTROPY PRODUCTION IN SYNTHETIC
HIERARCHICAL NETWORKS

A. An exactly treatable case: 2-node networks

Before considering large directed networks, we first
consider a simple 2-node network with asymmetric
coupling, as shown in Figure 3.

The 2-node directed network is defined by the weight
matrix,

W =

[
0 W12

W21 0

]
. (43)

This network has only two free parameters and so we can
explore the space of directed networks and see how the
directedness and EPR change. Firstly, the irreciprocity
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a) b)

FIG. 3. Entropy production in the 2-node network: a) We first consider a minimal directed network with only 2 nodes,
where we can explore the entire space of networks by varying the interaction strengths. b) Left: The exact EPR of the OU
as given in equation (54) for different 2-node networks. The positive diagonal represents undirected networks which do not
produce entropy. Further from this line, the EPR is higher. Right: The approximated EPR of the Ising model also increases
as the network becomes more directed, but with a non-linear relationship.

of this network is given by,

1− r =
|W12 −W21|
W12 +W21

. (44)

The trophic levels, h, are given by the solution to the
equation,[

W12 +W21 0
0 W12 +W21

] [
h1

h2

]
=

[
W21 −W12

W12 −W21

]
, (45)

which has general solution,

h1 − h2 =
W21 −W12

W21 +W12
, (46)

and trophic directedness,√
1− F0 =

|W12 −W21|
W12 +W21

, (47)

which coincides with the irreciprocity. The Henrici and
normalised Henrici indices are given by,

dH = |W12 −W21|, (48)

d̂H =
|W12 −W21|√
W 2

12 +W 2
21

. (49)

Each of the measures somehow captures the asymmetry
between pair of weights, thereby quantifying the direct-
edness, but with unique nuances. The irreciprocity and
trophic directedness are normalised by the l1 norm of
the matrix whilst the normalised Henrici index uses the
l2 norm and the Henrici index is unnormalised. Next we
consider the dynamics on this network, beginning with
the RW. The RW does not converge to a steady state on
the 2-node network unless the walkers are originally dis-
tributed with the steady state distribution. This is due
to the fact that the network is bipartite meaning at each
time-step a random walker can only move to the other
node. The transition matrix is given by,

T =

[
0 1
1 0

]
. (50)

Therefore, π =
(
1
2 ,

1
2

)
is the Perron left eigenvector and

the steady-state. Yet, despite the directedness of the
network, this steady state is clearly preserves detailed
balance as P12 = P21 = 1

2 . Next we consider the OU
process. We note that the eigenvalues of the associated
friction matrix,

B = Θ(I − γW ), (51)

are given by the pair,

λ± = Θ±Θγ
√

W12W21. (52)

Therefore, to guarantee decay to a steady state, we en-
force the condition,

γ <
1√

W21W12

. (53)

Handily, the Sylvester equation (D8) is explicitly solvable
for systems of size N = 2 and so the EPR has a closed
form solution [57]. For the 2-node network, the EPR
becomes,

Φ =
Θγ2

2
(W12 −W21)

2, (54)

a function of the difference, |W12 − W21|, between the
weights of the pair of edges. Importantly, this means the
EPR increases quadratically with the (unnormalised)
Henrici index, a relationship that we will show to hold
consistently across experiments for the OU. Further-
more, the EPR is not normalised with respect to the
total strength of the network. Trivially, when the
connection is symmetrical, W12 = W21, the system
preserves detailed balance.

Finally, we can consider the Ising dynamics on this
network. Whilst we do not have the exact solution,
there are only four possible spin configurations in this
system, therefore we can accurately estimate the steady
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state probabilities and consequently the EPR. The EPR,
Φ, for both the OU and Ising systems is plotted as a
function of the network weights (W12,W21) as shown in
Figure 3. The positive diagonal W12 = W21 represents
the subset of undirected networks, which preserve
detailed balance. In both cases, as the asymmetry of the
network increases the EPR increases. The EPR in the
OU is a function purely of the distance between the two
weights, whereas for the Ising model, the relationship
appears to be nonlinear.

B. Entropy production in parameterised synthetic
networks

Equipped with a range of stochastic network dynamics
where we can estimate the EPR, as well as a mechanism
to systematically vary the directedness of the network,
we can investigate the affect of directedness on the de-
gree of non-equilibrium. Considering networks of sizes
N = 10, 100, 500 and 1000, we generate hierarchical net-
works using preferential attachment (see Appendix B)
and then interpolate between these networks and their
Hermitian as described in Section II. Recall the interpo-
lation is given by,

Ŵ (ϵ) = (1− ϵ)W̃ + ϵW , (55)

for ϵ ∈ [0, 1], with ϵ = 0 corresponding to an undirected
network and ϵ = 1 being maximally directed. Recall
further, that Figure 2 showed that all four measures of
asymmetry scaled linearly or almost linearly with the pa-
rameter ϵ. Therefore we can consider ϵ to be a normalised
(relative) measure of directedness. Figure 4 shows the
results of varying ϵ for all four dynamics and for differ-
ent network sizes. Clearly, in each case, the directedness
ϵ causes a non-linear increase in the relative EPR that
remains consistent as the network size increases. Fur-
thermore, there are clear similarities between dynamics.
Firstly, we consider the two leftmost panels, correspond-
ing to the DT/CTRW dynamics. We see that the nor-
malised EPR Φ(ϵ)/Φmax increases quadratically in ϵ. In
the third panel, we see an identical quadratic increase for
the OU process. In fact, this quadratic increase in ϵ can
be proven to be exact in the special cases of 2-node and
circulant networks (see Appendices E and F). In the fi-
nal panel, we show the results for the NMF Ising model.
The EPR also increases with ϵ, but this increase is faster
than quadratic (note the y−axis is logarithmic) and ap-
proaches an exponential increase as N → ∞. Across
both dynamics and system size, directedness causes a vi-
olation of detailed balance and drives the EPR of the
system.

V. ENTROPY PRODUCTION AND
DIRECTEDNESS IN ERDŐS–RÉNYI GRAPHS

In the previous section, we used the interpolation to
vary the directedness of a given network. We were
able to show that the EPR scales, non-linearly, with
the relative directedness of the network for all four
considered dynamics. However, as all the directedness
measures increased (almost) linearly in ϵ, it is unclear
which ‘type’ of directedness is actually driving the
violation of detailed balance and the EPR. In an effort
to decouple the different measures of directedness, we
consider a different approach to generating networks.
Instead of specifically generating hierarchical, directed
networks and interpolating, as before, we now utilise
directed Erdős–Rényi graphs as a null network model
[59]. A directed Erdős–Rényi (ER) graph, G(N, p), is a
randomly sampled, unweighted network with N nodes.
Each directed pair of nodes i → j is connected with
independent probability p ∈ [0, 1]. The ER generating
process does not assume or enforce a hierarchical
structure, however hierarchical directedness can emerge
spontaneously. For each value of p, we randomly sample
ER graphs and measure their directedness with each
measure. In addition, we measure the EPR of each of
the four dynamics on these networks.

Figure 5 shows the behaviour of the directedness mea-
sures as a function of the ER parameter p, normalised
by the maximum value across all trials, (left pane) as
well as the behaviour of the EPR for each of the four
systems as a function of the ER parameter p (right
pane), also normalised by the maximum value. For
these calculations, we consider N = 100 and sample 100
graphs at each value of p. The figure shows the mean,
with standard deviation shading, over the 100 samples.
Firstly, we note the different profiles of the directedness
measures. The unique behaviour of each measure shows
we have been able to decouple the different notions of
directedness, allowing us to identify which one is closely
correlated with the EPR. The irreciprocity, trophic
directedness and normalised Henrici index all decay as
a function of p but with different decay rates. On the
other hand, the Henrici index has a parabolic shape,
peaking at p = 0.5. We can compare this to the different
profiles of each of the dynamics in the right pane.
The DTRW curve decays linearly in p mirroring the
curve of the irreciprocity, whilst CTRW curve decays
exponentially mirroring the trophic directedness. We
note that ΦDTRW,ΦCTRW are only defined when the
network is strongly connected and so are only calculated
for samples generated with p > 0.1 where we checked
that the sampled graph was strongly connected. Both
the OU and Ising curves follow the parabolic shape of
the Henrici index, peaking at p = 0.5. The Ising curve
show far greater variance at each value of p suggesting
that the EPR is very susceptible to small structural
changes in the network or that the system is operating
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FIG. 4. Entropy production rate in interpolated synthetic networks: Normalised EPR, Φ(ϵ)/Φmax, in the DT/CTRW,
OU and Ising systems as a function of the directedness parameter ϵ. Columns 1 & 2: The first two panes show the results
for the DT/CTRW. Across network sizes, Φ(ϵ)/Φmax scales quadratically in ϵ. Column 3: The third column shows the results
for the OU process. The normalised EPR, Φ(ϵ)/Φmax, increases quadratically in ϵ, as found analytically in the 2-node network.
Column 4: The final column shows the result for the NMF Ising approximation. The normalised EPR, Φ(ϵ)/Φmax, increases
faster than quadratically and approaches an exponential increase as N → ∞. Note that the y−axis is logarithmic from 0 to 1
for this pane.
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FIG. 5. Directedness and entropy production rate in Erdős–Rényi graphs: Left: This plot shows the mean, with
standard deviation shading, of normalised directedness measures as a function of the ER parameter p for N = 100 over 100
samples. We can see that the irreciprocity, trophic directedness and normalised Henrici index decrease as a function of p, with
different decay rates. On the other hand, the Henrici index has a parabolic shape and peaks at p = 0.5. Right: This plot shows
the mean, with standard deviation shading, of the normalised EPR for the four systems as a function of the ER parameter p
for N = 100 over 100 samples. The DTRW curve follows the irreciprocity. The CTRW curve follows the trophic directedness.
Both the OU and Ising curves peak at p = 0.5, closely following the Henrici index of the network. The Ising curve shows very
large variance at each value of p suggesting that small structural differences lead to large differences in Φ potentially being
close to the critical temperature.

close to the critical temperature, where the EPR is
maximised [29, 89].

The DTRW is a process that only sees the network
locally. Therefore, in a single time-step, the dynam-
ics, and by extension the EPR, depend only on the

directedness of individual edges in or out of the walker’s
momentary position. As a result, the EPR is strongly
correlated with, or driven by, the irreciprocity, which
strictly measures differences between the forward and
backward connection strength. Furthermore, DTRW
dynamics are invariant to scaling of the network weights
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i.e. the dynamics of the process evolving on W is the
same as that of αW for α > 0. Therefore, the fact that
the irreciprocity is a normalised measure also explains
the strong correlation. Whilst the CTRW still sees the
network locally, the extension to continuous time means
that the probability of transitioning (albeit not directly)
between any pair of nodes, in a finite time t, is non-zero.
As a result, the global directed structure of the network
plays a role in the dynamics and the EPR. The CTRW
is also invariant to scaling of the network. This explains
why the trophic directedness, a normalised but global
measure of directedness, is strongly correlated with the
EPR of the CTRW.

On the other hand, the OU and Ising dynamics,
are complex interacting systems where, at any given
time-point, the entire network structure is influencing
the dynamics. Furthermore, they are not invariant to
scaling of the network. As a result, the unnormalised
Henrici’s index, measuring non-normality, appears to be
most strongly correlated with the EPR of the systems,
indicating that the global hierarchy, as well as the
magnitude of the weights, of the network are responsible
for driving the interacting dynamics from equilibrium.

VI. ENTROPY PRODUCTION AND
DIRECTEDNESS IN REAL WORLD NETWORKS

In this section, we consider a dataset of 97 real-world
directed networks from ecology, sociology, biology,
language, transport and economics [52]. For a full
description of the dataset see Appendix J. We measure
the directedness of these networks with the four mea-
sures and then consider the four dynamical systems
evolving on these networks and measure the EPR.
Furthermore, we differentiate between networks from
different domains, and plot the correlations between
the directedness measures and the EPR. For real-world
networks, the irreciprocity, trophic directedness and
non-normality are all strongly positively correlated (see
Appendix A and Refs. [41, 50, 51]). In addition, most
directedness is trophically or hierarchically organised,
indicating a lack of ‘loop-like’ structures, that are
asymmetric but not hierarchical, in real-world networks
[90, 91]. Next, by considering the four dynamical
systems of interest evolving on the real world networks,
we measure the EPR and plot the correlations with the
different measures of directedness.

For both the DT/CTRW dynamics, we restrict to the 9
strongly connected networks to guarantee the existence
of a steady state. Figure 6 shows the EPR of each
system correlated with each of the four directedness
measures. The first column shows the results for the
DTRW. There is a strong correlation between the
normalised directedness measures and the EPR and
poor correlation with the Henrici index. This supports

the conclusions from Section V that indicated that
normalised directedness was a better determinant of
the EPR than unnormalised measures when the system
is invariant to scaling the network. Due to the strong
correlations between the three normalised measures (see
Appendix A, Fig. 10), the hierarchical measures of
trophic directedness and normalised Henrici also show
strong correlations. However, the analysis in Section
V suggests that it is, in fact, the irreciprocity that
is driving this relationship. In the second column of
Figure 6, we can see that the EPR of the CTRW is
only weakly correlated with the directedness measures
indicating that directedness alone is not sufficient to
determine the distance of this system from equilibrium.
This suggests that the thermodynamics of the CTRW
are more dependent on the network substructure than
the other systems. In previous experiments, using the
interpolation or the ER null model, network substructure
and size was not varied with the complex heterogeneity
seen in real-world network data from diverse fields.
The third column clearly shows that the Henrici index
almost perfectly correlates with the EPR of the OU
process indicating that the symmetry breaking in a
non-normal network directly drives broken detailed
balance in the OU model. This further supports our
findings in synthetic networks in Sections IV & V.
Finally the rightmost column shows the results for the
Ising model. The Ising model is correlated strongly with
the normalised measures of directedness. Whilst the
previous section suggested that the Henrici index is also
strongly correlated to the EPR in the Ising model, the
high variance in the EPR also indicated that the Ising
model could be susceptible to small changes in network
structure, or proximity to criticality, which could explain
noisier relationships in the real-world networks.

The analysis on real-world networks indicates that
directedness again drives broken detailed balance in the
dynamics. However, it distinguishes between systems
like the OU process where the absolute non-normality,
regardless of network sub-structure, dictates the distance
from equilibrium, and systems like the CTRW, where
the low correlations indicate that directedness alone is
not enough to predict the EPR.

VII. ENTROPY PRODUCTION AND
DIRECTED NETWORKS FROM
MULTIVARIATE TIME-SERIES

In the previous section, we considered a plethora of
real-world structural network data from a diverse range
of fields and assumed the dynamics evolving on the
networks. However, in many complex systems, such
(directed) structural network data is either unavailable
or of less interest than empirical spatiotemporal data of
node activities in the form of a multivariate time-series
(MVTS). Extracting information about the structural
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FIG. 6. Entropy production rate and directedness in real-world networks: We plot the EPR of four dynamical
systems against four directedness measures on real world networks from twelve fields. The first column shows the EPR of the
DTRW and the second the EPR of the CTRW. These are restricted to nine strongly connected networks. The third column
shows the EPR of the OU and the fourth the EPR of the Ising model. We can that the normalised directedness measures are
strongly correlated with the DTRW and Ising model. The Henrici index is extremely strongly correlated with the EPR of the
OU process. None of the measures are correlated with the EPR of the CTRW. Ecological networks are in orange, social in teal,
biological in blue, language in green, transport in red and economic in black.
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or dynamical organisation of a system from the complex
patterns in a MVTS is a ubiquitous problem in complex
systems science [92, 93]. A range of computational
methods exist to quantify broken detailed balance in a
MVTS [25, 61, 94–96]. Concurrently, a range of methods
for inferring directed network structure from data have
been developed [93, 97–103]. In this section, we will
present a simple, intuitive method for both estimating
the EPR and inferring a directed network structure
from a MVTS using linear auto-regression [60]. We fit
a first-order multivariate autoregressive model and then
associate this model to a corresponding OU process
where the EPR can be calculated explicitly [57]. Fur-
thermore, this fitting will infer a network of interactions
between the variables, under the assumed model, whose
directedness can be measured. In addition to calculating
the overall directedness, we can extract the trophic
levels as described in Section II in order to unravel the
hierarchical organisation of the system. We will apply
this approach to MVTS from human neuroimaging
data from the Human Connectome Project (HCP) and
stock-prices from the New York Stock Exchange (NYSE)
to investigate the relation between broken detailed
balance and structural directedness in dynamic data.

Whilst the assumption of a linear model may seem
presumptuous, previous studies have found that even
highly non-linear systems, such as large-scale brain
dynamics, are well, or even best, described by linear
models [104]. Furthermore, autoregressive models
have previously found success in a spectrum of areas
including finance and economics [60], neuroscience [105]
and beyond. Finally we note that three recent studies
in neuroimaging have considered related approaches,
fitting linear models to neural recordings in order to
quantify the EPR [106] or the asymmetry of interactions
[62, 107].

A. Linear auto-regression of multivariate
time-series

Consider an N−dimensional MVTS of signals of the
formX(ti) = {X1(ti), ..., XN (ti)} recorded at equispaced
time-points ti ∈ {t0, t1, ..., tT }. We assume such signals
are discrete, finite observations of either a generalised or
network-based OU process,

dx

dt
= −Bx(t) + ξ(t), (56)

dx

dt
= (W − I)x(t) + ν(t), (57)

with additive noise satisfying,

⟨ξ(t)ξ⊤(t′)⟩ = 2Dδ(t− t′), (58)

⟨ν(t)ν⊤(t′)⟩ = 2σIδ(t− t′), (59)

respectively, as previously defined in Section III.

In order to find the parameters, B,D or W , σ,
that best explain our observed data, we fit a first-order
linear multivariate auto-regressive (MAR) model of the
form,

X(ti+1) = AX(ti) + χ(ti), (60)

where A is calculated using least-squares auto-regression
and χ is a MVTS of residuals. In order to associate the
MAR to an OU process, we discretise the continuous-
time process with a one-step scheme. Whilst any such
discretisation can be applied, we proceed with a Euler-
Maruyama discretisation [108], with time-step ∆t and
obtain,

x(ti+1) = [I −∆tB]x(ti) +Ληi, (61)

x(ti+1) = [I +∆t(W − I)]x(ti) + Γζi, (62)

where ΛΛ⊤ = 2D, ΓΓ⊤ = 2σI and ηi, ζi are
N−dimensional independent, identically distributed
Gaussian vectors with independent components, each
with mean 0 and variance ∆t. Thus we can associate
the discretised OU process to the MAR model using the
following relations,

A = I −∆t(B), (63)

A = I +∆t(W − I). (64)

Furthermore, in the case of the network-restricted model,
we modify the auto-regressive algorithm to use non-
negative least-squares in order to guarantee that W is
restricted to non-negative entries (see Appendix I) [109].
In order to estimate D or σ, we take the covariance of
the residual time-series χ(t) and note that,

Cov[χ] = 2∆tD, (65)

Cov[χ] = 2∆tσI, (66)

depending on the assumed model. We can estimate
σ ≈ ⟨ 1

2∆tdiagCov[χ]⟩, where ⟨·⟩ is the mean. We note
that ∆t represents the time-scale of the process and is
not discernible directly from the time-series data but that
∆t << 1 is an assumption of the discretisation. In the
following, we take ∆t = 0.1. Once B,D or W , σ have
been obtained, if −B or W − I are stable matrices, one
can use the analysis presented in Section III to calcu-
late the EPR of the unique steady-state and quantify the
degree to which we have broken detailed balance in the
time-series. Furthermore, the directedness of the effec-
tive network, W , can be analysed using the measures
presented in Section II.

B. Applications to real-world multivariate
time-series

1. Human neuroimaging at rest and during task

We first apply this approach to neuroimaging data
from the HCP [110]. We consider BOLD fMRI in
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the Desikan-Killany (DK80) parcellation [111] with 62
cortical regions and 18 sub-cortical regions taken from
the same 100 (unrelated) participants at rest and during
a social and motor task. For further details on the
experimental paradigms see Ref. [110]. The data was
pre-processed following standard HCP protocols and is
further described in Ref. [112] and Appendix K. For
each participant in each condition, we apply the method
described in the previous section to fit both a general
linear model and a network-restricted model using auto-
regression. We then measure the EPR from the general
model and the directedness from the effective network
extracted in the restricted model. In addition, we parti-
tion the nodes of the network into the 7 canonical Yeo
functional sub-networks, each of which is associated with
a specific aspect of brain function [113] (see Appendix K).

Figure 7 shows the results of the analysis applied
to the neuroimaging data. Panel a) shows that the
EPR is elevated in task conditions when compared to
rest, which coincides with results from previous studies
[25, 26, 61, 62]. However, we can also see that the effec-
tive network becomes significantly more directed in the
task states which drives the increase in the EPR. Panel
b) shows that the EPR is positively correlated with the
directedness using all measures. Going beyond aggregate
quantities, panel c) shows the trophic organisation of a
participant-averaged effective network coloured accord-
ing to the Yeo partition. This representation allows us to
see where each sub-network sits in the overall hierarchy
and how the network is reorganised by the task stimulus.
Similarly, we can plot the mean trophic level of each
sub-network in each state, as shown in panel d). We
can see that during tasks some sub-networks re-position
themselves higher in the hierarchy, such as the dorsal
attention network, whilst others are re-positioned lower,
such as the sub-cortical regions. The link between the
hierarchical organisation and the overall directedness of
the underlying network and the EPR of the dynamics
is supported by this empirical analysis. Furthermore,
our results support previous resulting regarding the
hierarchical reorganisation of the brain during tasks
[61, 62, 112, 114, 115].

2. Stock-prices from the New York Stock Exchange

We consider the daily stock-prices of 119 U.S. companies
listed on the NYSE over the period 2000-2021, as
previously analysed and published in Ref. [92]. Each
company represents a node whose signal is the fluctuat-
ing stock price. Therefore we have a single MVTS in this
case-study. Again we fit the general linear model and
calculate the EPR and the network-restricted model to
obtain an effective network of interactions between the
prices. Notably, under this model we restrict to positive
connections between nodes, a common assumption for
whole-brain modelling, but less common in the modelling

of financial time-series where variables may have strong
negative correlations [60]. However, our notions of
directedness and hierarchy assume positive weights, and
so this is an important modelling assumption.

Firstly, we note that the financial time-series is out of
equilibrium and has EPR Φ = 26.2 (3 s.f.). Furthermore,
the effective network of stock interactions is trophically
organised with trophic directedness,

√
1− F0 = 0.405 (3

s.f.), strongly directed with irreciprocity, 1 − r = 0.975

(3 s.f.) and non-normal (dH = 1.53, d̂H = 0.160 (3
s.f.)). In Figure 8, panel a) shows the trophic decom-
position of the effective network of interactions between
stocks, coloured by industry, and panel b) shows the
distribution of trophic levels for each industry. We
can see that consumer services and goods sit atop the
hierarchy, feeding into the dynamics of other stocks,
whilst market-sensitive indicators, such as financials
and utilities, sit at the bottom, following the trends.
The conclusion that the NYSE is operating out of
equilibrium can be interpreted both through the lens of
thermoeconomics [116, 117] which argues that the law of
statistical mechanics can describe economics systems, or
more simply through the lens of economic forces creating
a hierarchical interaction structure between stocks
and industries [118], that results in non-equilibrium
dynamics.

VIII. DISCUSSION AND CONCLUSIONS

Bridging the gap between the structure and dynamics
of complex networks is a fundamental challenge in the
modelling of real-world systems [9]. Here, we presented
novel results linking the hierarchical, directed structure
of a network with the emergence of non-equilibrium
dynamics and broken detailed balance. For a diverse
range of dynamical systems and directedness measures,
we first showed that the EPR increased with directedness
in synthetic hierarchical networks. We then decoupled
the notions of directedness using a null model and we
were able to show how the nature of the dynamics
dictated which directedness measure would predict its
EPR, highlighting the difference between locally- and
globally-evolving processes. Next we considered a vast
range of real-world network topologies and showed that
the link between the EPR and directedness held in
actual network data. Finally, we applied our theory to
multivariate time-series using a simple auto-regressive
model to measure the EPR directly from dynamic node
time-series, but also to unravel the hierarchical structure
of the interactions between variables. Applying this
method to human neuroimaging at task and at rest, we
found that the brain operates further from equilibrium
in task compared to rest indicating that the EPR is
a key indicator of cognitive exertion and complexity
of neural dynamics which confirms previous results
[25, 26, 61, 62, 114]. Additionally, our approach extracts
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a)

b)

c)

d)

FIG. 7. Entropy production rate and directedness of effective brain networks: a) The EPR of the linear model and
the directedness of the effective network are significantly elevated during task when compared to rest. b) EPR is positively
correlated with each of the directedness measures. c) This panel shows the trophic levels of a participant-averaged effective
network in each condition. The hierarchy of brain regions reorganises during tasks. Different functional networks occupy
different positions within the processing hierarchy and this position changes depending on the task. d) The distribution among
participants of trophic levels for each functional network in each condition. The significant changes in the distribution suggests
the reorganisation of the processing hierarchy during task. (ns) = p > 0.05; (*) = p > 0.01; (**) = p > 0.001; (***) =
p > 0.0001; (****) = p ≤ 0.0001.
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a) b)

FIG. 8. Trophic hierarchy in the New York Stock Exchange: a) The effective network of stock interactions inferred from
prices on the NYSE and coloured by industry. The network is hierarchically organised with certain industries like ‘Consumer
services’ sitting atop the hierarchy and ‘Financials’ sitting at the bottom. b) Distributions of trophic level by industry. Each
industry occupies a different position in the hierarchy with ‘Consumer goods/services’ at the top and ‘Financials’ and ‘Utilities’
at the bottom.

a network representation of regional interactions that
demonstrates the hierarchical re-organisation of the
brain during tasks [114, 115]. In addition, we analysed
stock-prices from the NYSE to identify the directed
influence structure between stocks created by the eco-
nomic forces at play during speculation [118].

Our work represents the first attempt to link the
structure of a network to its non-equilibrium thermody-
namics. Given that non-equilibrium dynamics and the
emergence of broken detailed balance is thought to be a
unifying phenomenon characterizing living systems [13],
our work indicates that directed, hierarchical structures
are imperative to the functioning of biological complex
systems. These results place newfound importance
on both the structural [41, 49, 53, 63, 91] and the
dynamical [40, 42, 47, 50] phenomena that are unique
to complex systems with directed connections. In
particular, in neuroimaging, where broken detailed
balance emerges consistently [25], the traditional as-
sumption of undirected structural connections limits the
accuracy of whole-brain models which cannot explain
the non-equilibrium nature of the empirical data. Our
simple linear modeling approach provides a first-step
to understand simultaneously the hierarchical structure
and the non-equilibrium thermodynamics of multivariate
data. Conversely, our analysis of empirical structural
data showed that real-world networks display strong
directedness and hierarchical organisation [51, 91].
Therefore, one can expect that the dynamics of such
systems will be operating out of equilibrium and thus
motivates the use of non-equilibrium thermodynamics
to describe their evolution [117].

These results provide a general framework to study
a range of applications. For example, hierarchically
modular network structure has been shown to signifi-
cantly impact critical dynamics [119], yet its influence
on thermodynamics remains to be elucidated. Further,
computational techniques for both measuring broken

detailed balance [94–96] and inferring interactions
[93, 98, 100, 103] directly from data, will allow these
results to be extended beyond the limitations of the an-
alytically tractable processes or linear models considered
here, to a range of non-linear dynamics and real-world
time-series. Finally, our approach provides a clear
and important interpretation for empirically observed
violations of detailed balance, as found in the brain [25].
As a result, such observations can be reframed from the
perspective of hierarchical network organisation which
can bring new insight into the workings of complex real-
world systems and the relationship between structure
and function.

To conclude, we have shown that directedness and
non-equilibrium dynamics are intimately linked. The
degree to which a system is hierarchically directed in its
interactions determines its divergence from thermody-
namic equilibrium. As a result, taking into consideration
the non-reciprocity of interactions becomes fundamental
to understanding the dynamic trajectories of both
models and real-world systems.

Code availability

The R and Matlab code used in this project will be
made available on publication at https://github.com/
rnartallo/brokendetailedbalance.

Data availability

The network data used in this project is collated from
multiple freely available locations and references are
given in Appendix J. The human neuroimaging data used
in this project is freely available from the HCP website
[110]. The financial time-series used in this project is
freely available from the Python package ‘yfinance’ and

https://github.com/rnartallo/brokendetailedbalance
https://github.com/rnartallo/brokendetailedbalance
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at Ref. [120].
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Appendix A: Relationship between trophic
directedness and non-normality

In previous studies, the relationship between trophic
coherence and non-normality has been discussed [41, 51].
In this appendix, we build on this by illustrating the situ-
ations where they are (in)equivalent, which lends insight
into what they are measuring. First, we define perfect
trophic directedness to be F0 = 0 (

√
1− F0 = 1) i.e.

maximally trophically directed. This occurs iff the level
differences zji = hi − hj are 1 for each pair of levels.
Oppositely, we define a network to be trophically flat
if F0 = 1 (

√
1− F0 = 0) i.e. maximally trophically undi-

rected. This occurs iff the level differences zji = hi − hj

are 0 for each pair of levels. Similarly, a network is
defined to be perfectly (maximally) non-normal

if dH(W ) = ||W ||F (d̂H(W ) = 1). This means that∑
i |λi|2 = 0 where {λi} is the eigenspectrum. Figure

9 shows examples of (un)weighted directed networks
in all four categories of trophically flat/directed and
non-normal/normal.

MacKay et al showed that a normal unweighted
network must be trophically flat [51]. In the unweighted
case, they begin by noting that (W⊤W )ij is the
number of common sources between nodes i and j,
whilst (WW⊤)ij is the number of common targets. In
particular, (W⊤W )ii = win

i and (WW⊤)ii = wout
i . If

non-normal

tr
op
hi
ca
lly
di
re
ct
ed

tr
op
hi
ca
lly
fla
t

normal
a) b)

c) d)

FIG. 9. Non-normality and trophic directedness: Non-
normality and trophic directedness are in-equivalent. a) A
hierarchical motif which is both non-normal and trophically
directed. Most real-world directed networks are in this cat-
egory. b) A normal but trophically directed network. There
are no such unweighted networks. c) A trophically flat but
non-normal network. Intuitively, this network has no clear
hierarchy but is still non-normal. d) A directed cycle which
is both normal and trophically flat. This network has no hi-
erarchy.

W is normal i.e. W⊤W = WW⊤, then win
i = wout

i

and vi = 0 for all i i.e. the network is trophically flat.

For a weighted network, the same result does not
hold. By following the proof of the unweighted case,
we can construct a counter example. In the case of a
network with non-negative weights, we now have,

(WW⊤)ii =
∑
k

W 2
ik, (A1)

(W⊤W )ii =
∑
k

W 2
ki, (A2)

which are no longer simply win
i , wout

i . If W is normal we
therefore have,

∑
k W

2
ik =

∑
k W

2
ki for each i. On the

other hand, a trophically flat network i.e. vi = 0 im-
plies

∑
k Wik =

∑
k Wki for each i. These two conditions

are not equivalent so we can construct a network that is
both normal and trophically directed. One such network,
shown in panel b) of Fig. 9, is given by,

W =


0 1 1 0
0 0 0 1
0 0 0 1√
2 0 0 0

 , (A3)
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which satisfies that
∑

k W
2
ik =

∑
k W

2
ki for each i

whilst
∑

k Wik ̸=
∑

k Wki. Therefore, it is normal yet
trophically directed (F0 = 0.9737).

On the other hand, trophic flatness does not imply
normality, even in the unweighted case. One can
consider the network,

W =



0 0 0 0 1 0 1 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 1
1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0


, (A4)

shown in panel c) of Fig. 9, which is non-normal
(dH(W ) = 2.8284) yet trophically flat. MacKay et al
present a simpler example of a trophically flat, non-
normal network, (dH(W ) = 0.6982), but including a self
loop,

W =

1 1 0
0 0 1
1 0 0

 . (A5)

MacKay et al further showed that perfect trophic direct-
edness implies implies all eigenvalues are 0 and, conse-
quently, perfect non-normality [51]. On the other hand,
perfect non-normality does not imply perfect trophic di-
rectedness, as evidenced by the so-called ‘feed-forward’
motif,

W =

0 1 1
0 0 1
0 0 0

 , (A6)

which has d̂H(W ) = 1 (dH(W ) = 1.7321) but
F0 = 0.1111.

Finally, in real-world directed networks, strong cor-
relations have been found between trophic directedness
and non-normality, but the relationship is non-linear
[41, 51]. This relationship can be partially explained
by introducing the ‘loop exponent’ of a network which
bridges the spectral properties of a network and the
trophic decomposition [41, 91]. Figure 10 shows the
correlations between the four different measures in the
97 real-world networks considered in Section VI.

Appendix B: A preferential attachment scheme for
generating hierarchical networks

The seminal contributions of de Solla Price [121, 122]
and the subsequent development of the preferential
attachment (PA) algorithm for generating random
networks [123], has long been studied for its power-law

degree distribution. Modifications to the PA algorithm
can cause it to generate non-normal, irreciprocal, troph-
ically directed networks with a strong hierarchy [50].
For the networks considered in Sections II and III, we
used the following generative algorithm.

We consider a growing network where, at each step,
a new node is added to the network. The new node
j connects to an exisiting node i with a probability
proportional to di, the degree of node i. We randomly
sample the weight of this connection Wji from a uniform
distirbution U(0, 1), and then introduce a weak recip-

rocal linkWij =
Wji

γ for γ ≫ 1 such that 0 ≤Wij ≪Wji.

As the network begins with no edges and a single
node, we must initialise the network in some way. When
a new node j is added to the network, if an exisiting
node i has di = 0, they are connected with probability
0 < p0 ≪ 1. If the exisiting node i has di > 0, then they
are connected with probability min(1, di

dtot
+ µ) where

dtot is the total degree of the network. This approach
produces a strongly connected graph where each edge is
reciprocated, which may not be true for all real-world
networks.

Appendix C: Linear interpolation parameterises
trophic directedness and irreciprocity

In Section II, we varied the directedness of networks by
first generating a hierarchically directed network using
the PA algorithm, as described above, and then linearly
interpolating between this network and its Hermitian,

Ŵ (ϵ) = (1− ϵ)W̃ + ϵW , (C1)

for ϵ ∈ [0, 1] where the Hermitian network is given by

W̃ = 1
2

(
W +W⊤) . Figure 2 showed that each of the

four measures increases almost linearly with ϵ. In this
section, we show that the irreciprocity and trophic di-
rectedness increase exactly linearly i.e.

1− r(Ŵ (ϵ)) = ϵ(1− r(W )), (C2)√
1− F0(Ŵ (ϵ) = ϵ

√
1− F0(W ). (C3)

Unfortunately, non-normality is a spectral measure and
the eigenvalues of the matrix Ŵ (ϵ) are not calculable

from W̃ and W .

We begin with the irreciprocity. We denote the
reciprocity of W by r (= r(1)). The irreciprocity of the
interpolated network is given by,

1− r(ϵ) = 1−
∑

i

∑
j ̸=i min(Ŵij(ϵ), Ŵji(ϵ))∑

i

∑
j ̸=i Ŵij(ϵ)

, (C4)

=

∑
i

∑
j ̸=i Ŵij(ϵ)−min(Ŵij(ϵ), Ŵji(ϵ))∑

i

∑
j ̸=i Ŵij(ϵ)

.

(C5)
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FIG. 10. Directedness of real-world networks: A comparison between the directedness measures on real-world networks.
Each pane shows a pairwise comparison between two of the four directedness measures on 97 real world networks from different
domains. We can see strong correlations between the three normalised measures irreciprocity, trophic directedness and nor-
malised Henrici index with a much weaker correlation to the unbounded Henrici index. We can also identify which fields the
strongly, or weakly, directed networks belong to. Ecological networks are in orange, social in teal, biological in blue, language
in green, transport in red and economic in black.

Firstly, we note that the interpolation preserves the row
sums (even excluding the diagonal), so the denominator,
which we denote k, is the same as in the irreciprocity of
the original network W .

1− r(ϵ) =

∑
i

∑
j ̸=i Ŵij(ϵ)−min(Ŵij(ϵ), Ŵji(ϵ))

k
,

(C6)

k(1− r(ϵ)) =
∑
i

∑
j ̸=i

Ŵij(ϵ)−min(Ŵij(ϵ), Ŵji(ϵ)).

(C7)

Then, using the defintion of Ŵij(ϵ) and cancelling the
Hermitian terms, we obtain,

k(1− r(ϵ)) =
∑
i

∑
j ̸=i

ϵWij − ϵmin(Wij ,Wji). (C8)

Finally, we get,

1− r(ϵ) =
ϵ
∑

i

∑
j ̸=i Wij −min(Wij ,Wji)

k
, (C9)

1− r(ϵ) = ϵ(1− r). (C10)

□

Next, we consider the trophic directedness. As defined
in Section II, for the original network W , we have quan-
tities, win

i , wout
i . For the interpolated network these be-

come,

win
i (ϵ) = ϵwin

i + (1− ϵ)
1

2
(win

i + wout
i ), (C11)

wout
i (ϵ) = ϵwout

i + (1− ϵ)
1

2
(win

i + wout
i ). (C12)

From this, we obtain,

ui(ϵ) = win
i (ϵ) + wout

i (ϵ) (C13)

= wout
i + wout

i (C14)

= ui, (C15)

i.e. ui is preserved under interpolation. On the other
hand,

vi(ϵ) = win
i (ϵ)− wout

i (ϵ) (C16)

= ϵ(win
i − wout

i ) (C17)

= ϵvi. (C18)

Furthermore, the symmetric weighted graph Laplacian
of the original network, Λ, is also preserved under the
interpolation,

Λ(ϵ) = diag(u)− Ŵ (ϵ)− Ŵ⊤(ϵ) (C19)

= diag(u)− 2W̃ (C20)

= Λ. (C21)

For original network, h is the vector of trophic levels
which solves,

Λh = v. (C22)



21

The trophic levels of the interpolated network are given
by the solution to,

Λh(ϵ) = ϵv, (C23)

i.e. h(ϵ) = ϵh. Finally, we use an alternative, but equiv-
alent, formulation for 1−F0, shown by Mackay et al [51],
given by,

1− F0 =

∑
i,j Wij(hj − hi)∑

i,j Wij
. (C24)

Therefore, for the interpolated network, we have,

1− F0(ϵ) =

∑
i,j Ŵij(ϵ)(hj − hi)ϵ∑

i,j Wij
, (C25)

as the denominator, which we again denote k, is pre-
served under the interpolation. Expanding the interpo-
lation, we obtain,

k(1− F0(ϵ)) = ϵ(1− ϵ)
1

2

∑
i,j

(Wij +Wji)(hj − hi)

(C26)

+ ϵ2
∑
i,j

Wi,j(hj − hi).

Notice that the sum
∑

i,j(Wij+Wji)(hj−hi) vanishes as

the term for (i, j) cancels with the term for (j, i). There-
fore, we get

1− F0(ϵ) = ϵ2(1− F0), (C27)

or for the trophic directedness defined in Section II,√
1− F0(ϵ) = ϵ

√
1− F0. (C28)

□

Appendix D: Deriving the entropy production rate
in the Ornstein-Uhlenbeck process

We recall that the multivariate OU process is given by
the Langevin system,

dx

dt
= −Bx(t) + ξ(t), (D1)

where x(t) ∈ RN is the time-dependent state vector, B ∈
RN×N is the friction matrix, and ξ(t) ∈ RN is additive
white noise with covariance given by,

⟨ξ(t)ξ⊤(t′)⟩ = 2Dδ(t− t′), (D2)

whereD ∈ RN×N is the noise covariance matrix which is
symmetric. We follow Godrèche and Luck [57] to derive
the EPR rate of the OU in a steady state. Assuming
each eigenvalue of the friction matrix, B, has positive

real part, then the system relaxes exponentially fast to a
steady state with Gaussian fluctuations given by,

x(t) = e−Btx(0) +

∫ t

0

e−B(t−s)ξ(s) ds, (D3)

and covariance,

S = lim
t→∞

S(t), (D4)

= lim
t→∞
⟨x(t)x⊤(t)⟩. (D5)

The covariance can be written as,

S = lim
t→∞

[e−BtS(0)e−B⊤t,

+ 2

∫ t

0

e−B(t−s)De−B⊤(t−s) ds], (D6)

= 2

∫ ∞

0

e−BtDe−B⊤t dt. (D7)

It can also be shown that S satisfies the following
Sylvester equation [81],

BS + SB⊤ = 2D. (D8)

Next, we define the Onsager matrix, L, of kinetic coeffi-
cients,

L = BS = D +Q, (D9)

L⊤ = SB⊤ = D −Q, (D10)

parameterising the asymmetries through the matrix Q,
which provides an intuitive measure of the degree of
non-equilibrium.

The EPR, Φ, can then be written in the form,

Φ = ⟨x⊤(D−1B − S−1)⊤D(D−1B − S−1)x⟩, (D11)

= −⟨x⊤S−1QD−1QS−1x⟩, (D12)

with the second equation following from the relations
D−1B − S−1 = D−1QS−1 and Q = −Q⊤. Using that
the steady state is Gaussian we have that ⟨x⊤Ax⟩ =
Tr(SA) for a general matrix A and thus we have that,

Φ = −Tr(QD−1QS−1). (D13)

This can be rewritten in the form,

Φ = −Tr(D−1BQ). (D14)

For further details see Ref. [57].

Appendix E: 2-node networks

In Section IV, we considered directed 2-node networks
and showed that the EPR of the OU increases with the
asymmetry between the two connections. Furthermore,
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for larger networks, we consider the OU and calculated
the EPR as a function of the interpolation parameter ϵ
using the numerical solution of the Sylvester equation
(D8). Here we consider the linear interpolation applied
to the case of 2 nodes, where the EPR as a function of ϵ
can be calculated explicitly [57]. We show, analytically,
that the Henrici index increases linearly and the EPR of
the OU increases quadratically in ϵ, consistent with the
conjectured relationship obtained numerically for hierar-
chical networks. This varies from the analysis in Section
IV, where we varied the weights (W12,W21) as we are
now fixing these weights and performing the interpola-
tion between the network and its Hermitian. The 2-node
directed network is defined by the weight matrix,

W =

[
0 W12

W21 0

]
. (E1)

In the previous section, we showed that the irreciproc-
ity and trophic directedness are linearly interpolated by
ϵ. Recalling from Section IV, that the irreciprocity and
trophic directedness of the 2-node network coincides and
is given by,

1− r =
√
1− F0 =

|W12 −W21|
W12 +W21

, (E2)

then the irreciprocity and trophic directedness of the in-
terpolated network is given by,

1− r(ϵ) =
√

1− F0(ϵ) = ϵ
|W12 −W21|
W12 +W21

. (E3)

On the other hand, we were not able to show that, for
general networks, the Henrici indices scaled linearly with
ϵ, but we can do so in the case of the 2-node network.
Recall that the Henrici indices of the 2-node network were
given by,

dH = |W12 −W21|, (E4)

d̂H =
|W12 −W21|√
W 2

12 +W 2
21

. (E5)

First we define,

W̃12(ϵ) = ϵW12 +
1

2
(1− ϵ)(W12 +W21) (E6)

W̃21(ϵ) = ϵW21 +
1

2
(1− ϵ)(W12 +W21) (E7)

The eigenvalues of the interpolated network are given by,

λ±(ϵ) = ±
√
W̃12(ϵ)W̃21(ϵ), (E8)

thus the Henrici index factorises,

d2H(ϵ) = [W̃12(ϵ)]
2 + [W̃21(ϵ)]

2 − 2W̃12(ϵ)W̃21(ϵ) (E9)

= ϵ2(W12 −W21)
2 (E10)

dH(ϵ) = ϵ|W12 −W21| (E11)

= ϵdH . (E12)

Next we consider the OU evolving on an interpolated 2-
node network. We recall that for an MOU defined by
matrices,

B =

(
a b
c d

)
, D =

(
u w
w v

)
, (E13)

the EPR is given by,

Φ =
(cu− bv + (d− a)w)2

(a+ d)(uv − w2)
. (E14)

For the 2-node network, this expression becomes,

Φ =
Θγ2

2
(W12 −W21)

2, (E15)

We now fix W12 ̸= W21 which has an associated EPR Φ.
Under the interpolation, the network becomes,

Ŵ (ϵ) =

[
0 W̃12(ϵ)

W̃21(ϵ) 0

]
(E16)

Thus, we have,

B =

(
Θ Θ(1− γW̃12(ϵ))

Θ(1− γW̃21(ϵ)) Θ

)
, (E17)

D =

(
2σ 0
0 2σ

)
, (E18)

which, after simplification, yields an expression for the
EPR of the interpolated system,

Φ(ϵ) =
Θγ2ϵ2(W12 −W21)

2

2
(E19)

= ϵ2Φ. (E20)

□

Linking this to previous result, the EPR in the OU on the
interpolated 2-node network is also an exact quadratic
function of the unnormalised Henrici index of the corre-
sponding network.

Appendix F: Circulant networks

Next we consider the case of networks with circulant
weight matrices. These correspond to k-regular directed
cyclic networks. For example, Figure 11 shows two k-
regular 4-cycles (k = 1, 2). All k-regular N -cycles are
special cases of the (N − 1)−regular N -cycle which can
be written as,

W =


0 w1 w2 . . . wN−1

wN−1 0 w1 . . . wN−2

...
...

...
. . .

...
w1 w2 w3 . . . 0

 . (F1)



23

Directed 1-regular 4-cycle Directed 2-regular 4-cycle 
a) b)

FIG. 11. Circulant matrices and k−regular directed cycles: a) A directed 1-regular 4 cycle defined by the vector
w = (0, α, 0, 0). b) A directed 2-regular 4 cycle defined by the vector w = (0, α, β, 0).

This is uniquely defined by the top row,

w = (0, w1, ..., wN−1). (F2)

It is important to note that W is circulant and therefore
normal. However, as it is directed, it breaks detailed
balance for all the systems considered in this paper
(with the exception of the RW for N = 2). More
importantly, as we will show, applying the interpolation
to the cyclic networks, ϵ increases the EPR of the
corresponding NOU. We found in Sections V and VI
that the non-normality of the underlying network was a
extremely strong indicator of the EPR of the NOU, yet
in this case, the non-normality is 0 and the EPR still
varies with ϵ. This represents an important special case
where hierarchical asymmetry or a global direction are
not necessary for the OU to progressively break detailed
balance. The lack of these cyclic structures in real-world
networks [91] explains why, despite this special case, the
non-normality correlates so closely with the EPR for the
OU on real-world networks, as shown in Section VI.

Firstly, as mentioned, the Henrici indices are 0 for
these networks as their weight matrices are normal.
Furthermore, for all i

win
i = wout

i =
∑
j

wj , (F3)

meaning v = 0 and therefore F0 = 1 (
√
1− F0 = 0) so

the network is trophically flat. This implies that the net-
work has no global direction or hierarchy as both global
measures vanish. On the other hand, it is locally asym-

metric and so has non-zero irreciprocity,

1− r = 1−
∑

j min(wj , wN−j)∑
j wj

(F4)

=

∑
j |wj − wN−j |
2
∑

j wj
. (F5)

Next, we consider the EPR of the OU on circulant net-
works. The interpolated network is also circulant and so
we can write it in terms of the top row. First, we define,

w̃i(ϵ) = ϵwi +
1

2
(1− ϵ)(wi + wN−i), (F6)

then the top row of the interpolated weight matrix is
given by

ŵ(ϵ) = (0, w̃1(ϵ), . . . . , w̃N−1(ϵ)). (F7)

Therefore, the friction matrix B = Θ(I − γŴ (ϵ)) is also
circulant and defined by the vector,

b(ϵ) = (Θ,−Θγw̃1(ϵ), . . . ,−Θγw̃N−1(ϵ)). (F8)

The matrix D is diagonal for the OU and therefore cir-
culant. Godrèche and Luck [57] showed that the EPR of
the MOU with circulant B,D is given by,

Φ =

N−1∑
k=0

(ℑ(b̃k))2

ℜ(b̃k)
, (F9)

where b̃ = (b̃0, ..., b̃N−1) is the discrete Fourier transform
of the vector b, ℑ(·) is the imaginary part and ℜ(·)
is the real part. Furthermore, b̃ is also the vector of
eigenvalues of the circulant matrix B.
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The discrete Fourier transform gives us,

b̃k = Θ−Θγ

N−1∑
j=1

w̃j(ϵ) exp i
2πjk

N
. (F10)

Using the periodicity and oddness/evenness of
sine/cosine we have that,

sin(
2πjk

N
) + sin(

2π(N − j)k

N
) = 0, (F11)

cos(
2πjk

N
) + cos(

2π(N − j)k

N
) = 2, (F12)

which allows us to simplify our expression to,

b̃k = Θ−Θγ

N−1∑
j=1

(ϵwj)(i sin(
2πjk

N
) + cos(

2πjk

N
))−Θγ

⌊N
2 ⌋∑

j=1

(1− ϵ)(wj + wN−j) cos(
2πjk

N
), (F13)

which we can then substitute into the formula for Φ(ϵ). Doing so, we get,

Φ(ϵ) =

N−1∑
k=0

Θ2γ2
(∑N

j=1 ϵwj sin(
2πjk
N )

)2

Θ−Θγ
∑⌊N

2 ⌋
j=1 (1− ϵ)(wj + wN−j) cos(

2πjk
N )−Θγ

∑N−1
j=1 ϵwj cos(

2πjk
N )

, (F14)

= ϵ2
N−1∑
k=0

Θ2γ2
(∑N

j=1 wj sin(
2πjk
N )

)2

Θ−Θγ
∑⌊N

2 ⌋
j=1 (wj + wN−j) cos(

2πjk
N )

, (F15)

= ϵ2Φ, (F16)

where Φ is the EPR of the fully directed network (Φ(1)).
Again, we can see that the EPR of the OU scales quadrat-
ically with ϵ, but in this case all the interpolated networks
are normal.

Appendix G: Coarse-graining fails to capture
entropy production in small Ising models

In an Ising model with N variables, there are 2N

possible configurations, meaning the state space expands
exponentially with the system size. For small Ising
networks, using the Glauber dynamics [86], we were
able to sample trajectories from the Ising model and
estimate the steady state probabilities. Then, with
the conditional transition probability defined by the
model, we were able to estimate the joint transition
probability and the EPR. However, for N > 10, the
state space is so large that estimating the steady state
probabilities required too many samples and sorting

samples into distinct states became computational in-
feasible. An alternative approach that has been applied
for the Ising model and in empirical time-series [25],
is to measure the EPR in a coarse-grained state-space
[87, 88]. Coarse-graining the state-space is achieved
by mapping a number of microstates, in the original
high-dimensional state-space (micro-space), to a lower
number of macrostates in a lower dimensional space
(macro-space). This can be achieved by clustering, in
particular hierarchical clustering, which maps ‘similar’
microstates into a single macrostate, as shown by the
schematic in Figure 12. Then, the EPR can be estimated
by measuring the divergence between forward and back-
ward joint transition probabilities in the coarse-grained
space [88]. This measurement is a lower-bound on
the ‘true’ entropy production in micro-space meaning
that broken detailed balance at the coarse-grained level
implies non-equilibrium dynamics at the micro-level
[25]. However, as we show here, this lower bound may
be inaccurate as a relative estimate of the EPR.
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Microstates Macrostates

FIG. 12. Coarse-graining of state space: High dimen-
sional state space can be coarse-grained into a lower one
by mapping multiple microstates into a lower number of
macrostates. This by done via a clustering approach. The
EPR in the coarse-grained state space is a lower bound on
the entropy production in the original state-space.

In order to illustrate this, we consider an Ising model
with 10 spins. This system has a state space of size
210 = 1024 which is close to the size-limit where we can
estimate the steady-state probabilities, yet large enough
to cluster states sensibly, meaning we can compare
the results in micro- and macro-space. We generate a
hierarchical 10-node network and apply the interpolation
described previously to vary the directedness of the
network. At each value of ϵ, we sample from the Ising
model using Glauber dynamics. We then estimate
the steady-state probabilities in micro-space and use
the conditional transition probability that defines the
dynamics to calculate the joint transition probabilities
and the EPR, as described in Section III. Concurrently,
at each ϵ, we apply bisecting, hierarchical k−means clus-
tering [124] as applied by Lynn et al [25] to the samples
to coarsen the state-space into k = 10 macrostates. We
note that, while we present the results for k = 10, this
result remained consistent over a reasonable number of
macro-states. In the macro-space, we no longer have
the conditional transition probability and so we directly
estimate the joint transition probability by counting the
occurrences of each transition, following Lynn et al [25],
which can then be used to estimate the EPR. Figure
13 shows the normalised EPR in both state-spaces
as a function of ϵ. Panel a) shows that the EPR in
micro-space follows the expected behaviour, increasing
non-linearly with ϵ, as was found in Sections IV, V
and VI. On the other hand, Panel b) shows that the
coarse-graining procedure causes an inaccurate relative

measurement of the EPR and there is no correlation
between the directedness of the network and the EPR.

a) Microstates Macrostatesb)

FIG. 13. Entropy production in micro- and macro-
space: Normalised EPR in the asymmetric Ising model with
10 nodes, calculated from samples, as a function of the in-
terpolation parameter ϵ. a) The normalised EPR calculated
in micro-space which follows the expected behaviour found in
Sections III, V and VI. b) The normalised EPR calculated in a
coarse-grained macro-space. There is no correlation between

the directedness of the network, ϵ, and the EPR Φ(ϵ)
Φmax

.

Appendix H: Derivation of the naive mean field for
the asymmetric Ising model

The naive mean-field (NMF) and the Thouless-
Anderson-Palmer (TAP) mean-field are standard ap-
proaches to solving the so-called ‘inverse Ising problem’
in equilibrium Ising models [85]. For non-equilibrium
(asymmetric) Ising systems, an information-geometric
approach can be used to approximate the mean-field
solution [125]. Here, we will derive the NMF for the
asymmetric Ising model following a recent framework
that unifies a number of mean-field approaches to the
Ising model [85].

We recall that the Ising model is defined by a dis-
crete time Markov chain where the spins at time t + 1
are updated according to,

P (x(t+ 1)|x(t)) =
∏
i

exi(t+1)hi(t+1)

2 coshhi(t+ 1)
, (H1)

hi(t+ 1) =
1

T
(Hi +

∑
j

Wijxj(t)), (H2)

where T is the thermodynamic temperature, Hi are
external fields and W = (Wij) are the pairwise coupling
strengths defined by a weighted network.

Furthermore, we recall that the sufficient thermo-
dynamic quantities we aim to approximate are,
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mi(t) =
∑
x(t)

xi(t)P (x(t)), (H3)

Dil(t) =
∑

x(t),x(t−1)

xi(t)xl(t− 1)P (x(t),x(t− 1))−mi(t)ml(t− 1). (H4)

where m(t) = (m1(t), ...,mN (t)) is the average ac-
tivation rate of the system and D(t) is the delayed
correlation matrix.

Using the language of information geometry [126, 127],
we define P(t) to be the manifold of P (x(t)) where
each point on the manifold corresponds to a set of
parameter values. Within P(t), there are sub-manifolds
Q(t) that are ‘analytically tractable’. The simplest such
manifold Q(t) is the manifold of models where each
spin is independent. Each point on the sub-manifold is
defined by a vector of parameters Θ(t) = {Θi(t)}, and
the distribution on this sub-manifold is given by,

P (x(t)|Θ(t)) =
∏
i

exi(t)Θi(t)

2 coshΘi(t)
. (H5)

The average activation rate of the spins is therefore given
by,

mi(t) = tanhΘi(t). (H6)

Given local fields H and a network W , we aim to
approximate the thermodynamic quantities of the
intractable target distribution P (x(t)|H,W ) ∈ P(t)
with a tractable distribution from Q(t). To do this, we
aim to find a distribution Q(x(t)) ∈ Q(t) that minimises
the KL-divergence to P (x(t)|H,W ). An important
result is that the independent model that minimises
the KL divergence, which we denote Q(x(t)|Θ∗(t)), has
identical activation rates to the target [125].

Next, we perform the so-called α−projection and
the Plefka expansion [127]. We parameterise a curve
between a tractable distribution Q(x(t)|Θ(t)) and the
target distribution P (x(t)|H,W ) with a parameter
α ∈ [0, 1] such that we have a family of distributions,

Pα(xi(t+ 1)|x(t)) =
∏
i

exi(t+1)hα
i (t+1)

2 coshhα
i (t+ 1)

, (H7)

hα
i (t+ 1) = (1−α)Θi(t) + α

 1

T
(Hi +

∑
j

Wijxj(t))

 .

(H8)

Therefore, at α = 0, we have P0(x(t + 1)|x(t)) =
Q(x(t + 1)|Θ(t + 1)) and at α = 1, we have
P1(x(t + 1)|x(t)) = P (x(t + 1)|x(t)). We can write the
thermodynamic quantities of the distribution at each
value of α as mα(t),Dα(t), functions of α.

The Plefka expansion is a Taylor expansion around
α = 0,

mα(t) = m0(t) +

n∑
k=1

αk

k!

∂km0(t)

∂αk
+O(α(n+1)), (H9)

but we note that m1(t) = m0(t) as mentioned ear-
lier [125]. Thus, the optimal tractable distribution,
Q(x(t)|Θ∗(t)) satisfies,

n∑
k=1

αk

k!

∂km0(t)

∂αk
= 0, (H10)

which should be solved with respect to Θ(t). The ap-
proximation is defined first by the number of terms in
this sum that we set equal to 0 and then solve for, but
also by the time-points at which the model is assumed
to have independent units [85]. The NMF is obtained by
setting only the first derivative to 0 and by assuming that
the model at both t and t − 1 have independent spins.
The first derivative at 0 is given by,
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∂mα=0
i (t)

∂α
= (1−mi(t)

2)

−Θi(t) +Hi +
∑
j

Wijmj(t− 1)

 , (H11)

where we direct the reader to the appendices of [85, 125]
for further details. This gives an approximation of the
optimal parameter setting,

Θ∗(t) ≈ Hi +
∑
j

Wijmj(t− 1), (H12)

and the NMF,

mi(t) ≈ tanh

Hi +
∑
j

Wijmj(t− 1)

 . (H13)

Similarly, one can expand Dα
il(t) around α = 0 and set

Θi(t) = Θ∗
i (t) to obtain the approximation,

Dil(t) ≈Wil(1−m2
i (t))((1−m2

l (t− 1)), (H14)

where we direct again to the appendices of [85, 125] for
further details.

Appendix I: Auto-regression with (un)constrained
least-squares

In Section VII, we defined a method to quantify the EPR
and infer an interaction network directly from a MVTS
using a linear model. This model is either an uncon-
strained

dx

dt
= −Bx(t) + ν(t), (I1)

multivariate OU process, or one that was constrained to
the edges of a network,

dx

dt
= (W − I)x(t) + ν(t). (I2)

Using the time-discretisation presented in Section VII, we
associate either model with an auto-regressive process of
the form [60],

X(ti+1) = AX(ti) + χ(ti), (I3)

where we find the coefficient matrix A using least-square
regression. In the case of the unconstrained model, we
simply solve the convex optimisation problem,

min
A∈RN×RN

||X1:T −AX0:T−1||2, (I4)

where Xi1:iT is an N × T matrix of data-points where
each column is the multivariate observation taken from

a time-point t = i1, ..., iT . Such a problem can be solved
using any standard convex optimisation solver but is
also available as a stand alone function in most scientific
programming languages.

From A, we can calculate the residuals at each
time-step,

χ(ti−1) = X(ti)−AX(ti−1). (I5)

We then estimate B and the noise covariance D by per-
forming,

B =
1

∆t
(I −A), D =

1

2∆t
Cov[χ] (I6)

for some choice of ∆t << 1. Clearly, ∆t simply scales
the process and as such can be chosen arbitrarily to be
0.1.

In the case of the network-constrained model, we
assume W has non-negative entries which means we
must restrict our solution space. Using the relation,

W =
1

∆t
(A− I) + I, (I7)

we solve the following optimisation problem,

min
W :Wij≥0

||X1:T − ((1−∆t)I +∆tW )X0:T−1||2, (I8)

which remains convex. Additional constraints such as
no self-loops or restriction to the existence of particular
edges can be added without breaking the convexity of
the problem. In addition, this particular problem can
also be solved using built in non-negative least-squares
algorithms in most programming languages subject to
appropriate modification. We estimate the noise inten-
sity using,

σ = ⟨ 1

2∆t
diagCov[χ]⟩, (I9)

where ⟨·⟩ is the mean. Again, the ∆t simply scales the
process and only affects the diagonal entries (self-loop)
of the network, but does not affect the asymmetries.

Finally, we note that in order to define the EPR,
we require that the process converges to a steady-state.
This requires that −B or W − I is a stable matrix i.e.
all eigenvalues have negative real part. This constraint
is non-convex and so cannot be enforced as part of
the algorithm without resorting to more heuristic and
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complex optimisation methods. In this study, we found
that all time-series considered, were best fit with an
unconstrained model that converged to a stationary
state, which did not always hold for the constrained
model. As a result the EPR estimates are obtained with
the unconstrained model, whilst the network inference is
done with the constrained model.

Appendix J: Empirical network data

In this study we consider 97 real-world directed networks
from a range of different fields including ecology, sociol-

ogy, biology, language, transport and economics. These
network were compiled from a range of different sources
and are reported in Table I.

TABLE I: Real-world directed network data from various sources.

Name Ref. Nodes Edges

Ecological
Marine Foodweb in Bahia Falsa, Mexico [128] 166 9576
Marine Foodweb in Estero de Punta Banda, Mexico [128] 143 3696
Marine Foodweb in Flensburg Fjord, Germany/Denmark [128] 77 576
Marine Foodweb 1 in Ythan Estuary, Scotland [128] 166 9029
Marine Foodweb in Carpinteria Salt Marsh Reserve, USA [128] 166 7682
Marine Foodweb in Sylt Tidal Basin, Germany [128] 215 14963
Marine Foodweb in Otago Harbour, New Zealand [128] 215 15266
River Foodweb in Berwick Stream, New Zealand [129] 77 240
River Foodweb 1 in Coweeta, USA [129] 58 126
River Foodweb 2 in Coweeta, USA [129] 71 148
River Foodweb in Martins Stream, USA [129] 105 343
River Foodweb in Powder Stream, New Zealand [129] 78 268
River Foodweb in Troy Stream, USA [129] 77 181
River Foodweb in Venlaw Stream, New Zealand [129] 66 187
River Foodweb in Black Rock Stream, New Zealand [130] 86 375
River Foodweb in Broad Stream, New Zealand [130] 94 564
River Foodweb in Dempsters Stream during summer, New Zealand [130] 107 965
River Foodweb in German Creek, New Zealand [130] 84 352
River Foodweb in Healy Creek, New Zealand [130] 96 634
River Foodweb in Kye Burn, New Zealand [130] 98 629
River Foodweb in Little Kye Burn, New Zealand [130] 78 375
River Foodweb in Stony Stream, New Zealand [130] 109 827
River Foodweb in Sutton Stream during summer, New Zealand [130] 87 424
River Foodweb in Canton Creek, New Zealand [130] 102 696
River Foodweb in Catlins Stream, New Zealand [131] 48 110
River Foodweb in Dempsters Stream during autumn, New Zealand [131] 83 414
River Foodweb in Dempsters Stream during spring, New Zealand [131] 93 538
River Foodweb in Sutton Stream during autumn, New Zealand [131] 80 335
River Foodweb in Sutton Stream during spring, New Zealand [131] 74 391
River Foodweb in Narrowdale Stream, New Zealand [132] 71 154
River Foodweb in North Col Stream, New Zealand [132] 78 241
Terrestrial Foodweb in Scotch Broom, England [133] 86 219
Marine Foodweb in Cayman Islands [134] 242 3764
Marine Foodweb in Chesapeake Bay, USA [135] 31 67
Dominance amongst ants [136] 16 36
Dominance amongst kangaroos [137] 17 91
Marine Foodweb in St. Marks Estuary, US [138] 48 218
Terrestrial Foodweb in Saint-Martin Island, Lesser Antilles [139] 42 205
Marine Foodweb 2 in Ythan Estuary, Scotland [140] 82 391
Lake Foodweb in Lough Hyne, Ireland [141] 349 5102
Marine Foodweb in Weddel Sea, Antarctica [141] 483 15317
Fossil Assemblage Foodweb from Chengjiang Shale, China [142] 33 90
Fossil Assemblage Foodweb from Burgess Shale, Canada [142] 48 243
Lake Foodweb in Bridge Broom Lake [143] 25 104
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Dominance amongst wolves [144] 16 148
Lake Foodweb in Little Rock Lake, USA 1 [145] 183 2476
Lake Foodweb in Little Rock Lake, USA 2 [146] 92 997
Marine Foodweb in Northeast United States Shelf [147] 79 1378
Lake Foodweb in Skipwith Common, England [148] 25 189
Marine Foodweb in Benguela Current, South Africa [149] 29 196
Marine Foodweb in Florida Bay during dry season [150] 128 2137
Dominance among ponies [151] 17 146
Dominance among cattle [152] 28 217
Dominance among sheep [153] 28 250
Dominance among bison [154] 26 314
Dominance among macaques [155] 62 1187
Terrestrial Foodweb in grasslands of the United Kingdom [146] 61 97
Terrestrial Foodweb in El Verde Field Station, Puerto Rico [146] 155 1507
Terrestrial Foodweb in Coachella Valley, USA [156] 29 262
Marine Foodweb in the Caribbean [157] 155 1507

Sociological
Political Blogs Network [158] 1224 18957
Friendship among college students in a course about leadership [159] 32 96
Friendship among highschool students [146] 70 366
Co-purchased political books on Amazon [160] 105 441
Social interactions between inmates in prison [161] 67 182
Social interactions between inmates in prison [161] 67 182

Biological
Protein network for 1A4J [159] 95 404
Protein network for 1AOR [159] 96 406
Protein network for 1EAW [159] 53 236
Gene regulatory network for Saccharomyces cerevisiae [162] 2933 6152
Human gene regulatory network for a healthy person [163] 4071 8466
Human gene regulatory network for a person with cancer [163] 4049 11707
Gene regulatory network for Pseudomonas aeruginosa [164] 691 991
Gene regulatory network for Mycobacterium tuberculosis [165] 1624 3169
Neuronal network for a mouse brain [146] 213 21654
Connectome of the Rhesus brain, extracted from tract tracing [166] 242 4090
Connectome of the Rhesus brain via retrograde tracer [167] 91 628
Neuronal network for Caenorhabditis elegans [168] 297 2345
Connectome of the cat brain [169] 65 1139
Connectome of the rat brain [170] 503 47329
Metabolic network of Archaeoglobus fulgidus [171] 1267 3011
Metabolic network of Caenorhabditis elegans [171] 1172 2864
Metabolic network of Chlamydia pneumoniae [171] 386 792
Metabolic network of Chlamydia trachomatis [171] 446 941
Metabolic network of Methanococcus jannaschii [171] 1081 2589
Metabolic network of Saccharomyces cerevisiae [171] 1510 3833
Metabolic network of Methanobacterium thermoautotrophicum [171] 1111 2705

Language
Citations from papers that cite “Small World Problem” [172] 233 994
Citations to Small, Griffith and descendants [172] 1024 4918
Word adjacency network for Dr. Seuss’s Green Eggs and Ham book [146] 50 101

Trade
International trade network of minerals [173] 24 135
International trade network of manufactured food products [173] 24 307
International trade network of manufactured goods [173] 24 310
International trade network of crude animal and vegetable material [173] 24 307
International trade network of diplomatic exchanges [173] 24 369

Transport
London tube network [174] 270 628
Paris metropolitan train grid [174] 302 705
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Somatomotor
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Sub-cortical

FIG. 14. Yeo parcellation projected onto the connec-
tome: The 7 canonical resting state networks are show pro-
jected onto the DK80 parcellation with the sub-cortical re-
gions also labelled.

Appendix K: Empirical time-series data

1. Human neuroimaging

In Section VII we analysed functional magnetic reso-
nance imaging (fMRI) from 100 unrelated participants
at rest and during task. This data is freely available

as part of the Human Connectome Project HCP1003
release. The data used here is the same as that analysed
previously in Ref. [112]. In brief, we used the Desikan-
Killany parcellation [111] made up of 62 cortical regions
and 18 sub-cortical regions for a total of 80 regions of
interest (DK80). The data was pre-processed using the
HCP pipeline using standard software packages from the
FMRIB Software Library, FreeSurfer and the Connec-
tome Workbench [175, 176]. This included correcting for
spatial and gradient distortions, head motions and fur-
ther included bias-field removal, intensity normalisation,
registration to a T1-structural image, transformation
to 2mm MNI (Montreal Neurological Institute) space
and application of the FIX artefact removal procedure
[176, 177]. Head motion was regressed out and, using
independent component analysis, artefacts were re-
moved using ICA+FIX processing [178, 179]. Using the
Fieldtrip toolbox [180], the average time-series of the
grayordinates in each region of the DK80 parcellation
was extracted and the resulting BOLD signal was

filtered in the range of 0.008-0.08 Hz using a second
order Butterworth filter.

We further parcellate the DK80 into 8 sub-networks, the
7 Yeo resting-state networks [113], and the sub-cortical
regions. The projection of the 8 sub-networks onto the
DK80 parcellation is shown in Figure 14.

2. Stock-prices from the New York Stock Exchange

In Section VII, we analysed stock prices from 119 U.S.
companies from the New York Stock Exchange (NYSE)
in the period 1 January 2000 to 17 June 2021. This is
the same financial dataset previously studied in Ref. [92].
It was obtained from the Yahoo! finance historical data
application programming interface (‘yfinance’ Python li-
brary) but is freely deposited online in Ref. [120].

[1] J. A. Dunne, R. J. Williams, and N. D. Martinez, Food-
web structure and network theory: The role of con-
nectance and size, Proceedings of the National Academy
of Sciences of the United States of America 99, 12917
(2002).

[2] M. O. Jackson, Social and Economic Networks (Prince-
ton University Press, 2010).

[3] S. Wasserman, Social Network Analysis (Cambridge
University Press, 1994).

[4] A.-L. Barabási, N. Gulbahce, , and J. Loscalzo, Network
medicine: A network-based approach to human disease,
Nature Reviews Genetics 12, 56 (2011).

[5] E. Bullmore and O. Sporns, Complex brain networks:
graph theoretical analysis of structural and functional
systems, Nature Reviews Neuroscience 10, 186 (2009).

[6] D. S. Bassett and O. Sporns, Network neuroscience, Na-
ture Neuroscience 20, 353–364 (2017).

[7] M. Newman, Networks (Oxford University Press, 2018).

[8] M. E. J. Newman, The structure and function of com-
plex networks, SIAM Review 45, 167 (2003).

[9] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-
U. Hwang, Complex networks: Structure and dynamics,
Physics Reports 424, 175 (2006).

[10] A. Barrat, M. Barthélemy, and A. Vespignani, Dynam-
ical Processes on Complex Networks (Cambridge Uni-
versity Press, 2008).

[11] I. Prigogine, Introduction to Thermodynamics of Ir-
reversible Processes (John Wiley & Sons, California,
United States, 1968).
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[102] M. Gilson, G. Zamora-López, V. Pallarés, M. H. Ad-
hikari, M. Senden, A. T. Campo, D. Mantini, M. Cor-
betta, G. Deco, and A. Insabato, Model-based whole-
brain effective connectivity to study distributed cogni-
tion in health and disease, Network Neuroscience 4, 338
(2020).

[103] A. F. Villaverde, J. Ross, F. Morán, and J. R. Banga,
Mider: Network inference with mutual information dis-
tance and entropy reduction, PLOS ONE 9 (2014).

[104] E. Nozari, M. A. Bertolero, J. Stiso, L. Caciagli, E. J.
Cornblath, X. He, A. S. Mahadevan, G. J. Pappas, and
D. S. Bassett, Macroscopic resting-state brain dynamics
are best described by linear models, Nature Biomedical
Engineering (2023).

[105] L. Harrison, W. Penny, and K. Friston, Multivariate au-
toregressive modeling of fMRI time series, NeuroImage
19, 1477 (2003).

[106] M. Gilson, E. Tagliazucchi, and R. Cofré, Entropy pro-
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